
July 27th 2020 — Quantstamp Verified

Skale Network

This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Smart Contracts

Auditors Alex Murashkin, Senior Software Engineer
Kacper Bąk, Senior Research Engineer
Ed Zulkoski, Senior Security Engineer

Timeline 2020-02-04 through 2020-07-10

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification,
Manual Review

Specification README.md
Spec

Source Code
Repository Commit

skale-manager remediation-3

skale-manager 50c8f4e

Total Issues 26 (21 Resolved)

High Risk Issues 3 (3 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 11 (8 Resolved)

Informational Risk Issues 7 (5 Resolved)

Undetermined Risk Issues 4 (4 Resolved)

High Risk The issue puts a large number
of users’ sensitive information
at risk, or is reasonably likely to
lead to catastrophic impact for
client’s reputation or serious
financial implications for client
and users.

Medium Risk The issue puts a subset of
users’ sensitive information at
risk, would be detrimental for
the client’s reputation if
exploited, or is reasonably
likely to lead to moderate
financial impact.

Low Risk The risk is relatively small and
could not be exploited on a
recurring basis, or is a risk that
the client has indicated is low-
impact in view of the client’s
business circumstances.

Informational The issue does not post an
immediate risk, but is relevant
to security best practices or
Defence in Depth.

Undetermined The impact of the issue is
uncertain.

Unresolved Acknowledged the existence of
the risk, and decided to accept
it without engaging in special
efforts to control it.

Acknowledged The issue remains in the code
but is a result of an intentional
business or design decision. As
such, it is supposed to be
addressed outside the
programmatic means, such as:
1) comments, documentation,
README, FAQ; 2) business
processes; 3) analyses showing
that the issue shall have no
negative consequences in
practice (e.g., gas analysis,
deployment settings).

Resolved Adjusted program
implementation, requirements
or constraints to eliminate the
risk.

Mitigated Implemented actions to
minimize the impact or
likelihood of the risk.

https://github.com/skalenetwork/skale-manager/blob/50c8f4e037f6bf578d62bd752516b17237b55811/README.md
https://hackmd.io/@chadwick/r1tBh9RbI
https://github.com/skalenetwork/skale-manager
https://github.com/skalenetwork/skale-manager/compare/50c8f4e..remediation-3
https://github.com/skalenetwork/skale-manager
https://github.com/skalenetwork/skale-manager/commit/50c8f4e037f6bf578d62bd752516b17237b55811

Summary of Findings

The scope of the audit is restricted to the set of files outlined in the section.Quantstamp Audit Breakdown

While reviewing the given files at the commit , we identified three issues of high severity, seven issues of low severity, and four issues of

informational severity. In addition, we made several suggestions with regards to code documentation, adherence to best practices, and adherence

to the specification. We recommend resolving the issues and improving code documentation before shipping to production.

50c8f4e

While reviewing the diff , we marked some of the issues as resolved or acknowledged, depending on whether

a code change was made. Some findings remained marked as "Unresolved" (such as , , and): we recommend taking a look at

these as we believe these were not fully addressed or still impose risks. In addition, we found 12 new potential issues of varying levels of severity. For

the commit , the new issue list beings with , and line numbers now refer to the commit. The severity of

some findings remained as "undetermined" due to the lack of documentation. Moreover, we made additional documentation and best practices

recommendations which were placed at the end of the report after the main findings.

Update: 50c8f4e..remediation-3
QSP-1 QSP-10 QSP-11

remediation-3 QSP-15 remediation-3

We recommend addressing all the issues before running in production.

: We reviewed the fixes provided in the following separate commits/PRs:Update

1. ()1da7bbd https://github.com/skalenetwork/skale-manager/pull/267

2. ()8c6a218 https://github.com/skalenetwork/skale-manager/pull/258

3. (
)

8652d74 https://github.com/skalenetwork/skale-
manager/pull/264/commits/8652d743fa273c68664c1acc972067d83b28f098

4. (
)

0164b22 https://github.com/skalenetwork/skale-
manager/pull/264/commits/0164b22436d8c10e22a202ff257581b76e038dec

5. ()7e040bf https://github.com/skalenetwork/skale-manager/pull/229

6. ()bd17697 https://github.com/skalenetwork/skale-manager/pull/224

7. (
)

c671839 https://github.com/skalenetwork/skale-
manager/blob/c6718397cbbe7f9520b3c7ff62aa5bd1b0df27f5/contracts/ContractManager.sol#L51

All main findings () from the original commit - and the re-audit commit - - were addressed in the

commits above. Some best practices suggestions and documentation issues were addressed, but some were not. Code coverage could also use

some improvement.

QSP-1..QSP-26 50c8f4e remediation-3

ID Description Severity Status

QSP-1 Potentially Unsafe Use of Arithmetic Operations High Fixed

QSP-2 Ability to register Address that already exists Low Fixed

QSP-3 Free Tokens for Owner from Testing Code High Fixed

QSP-4 Validator Denial-of-Service High Fixed

QSP-5 Unlocked Pragma Low Fixed

QSP-6 Use of Experimental Features Low Fixed

QSP-7 Centralization of Power Low Acknowledged

QSP-8 Transaction-Ordering Dependency in Validator Registration Low Fixed

QSP-9 Unintentional Locking of Tokens upon Cancelation Low Fixed

QSP-10 Validator Registration "Spamming" Low Acknowledged

QSP-11 Misusing / /require() assert() revert() Informational Acknowledged

QSP-12 Stubbed Functions in DelegationService Informational Fixed

QSP-13 Unhandled Edge Case in Validator Existence Check Informational Fixed

QSP-14 Potentially Unsafe Use of Loops Informational Fixed

QSP-15 Denial-of-Service (DoS) Medium Fixed

QSP-16 Denial-of-Service (DoS) Low Fixed

QSP-17 Potentially Unsafe Use of Loops (2) Low Acknowledged

QSP-18 Lack of Array Length Reduction Low Fixed

QSP-19 Unclear Purpose of the Assignment Undetermined Fixed

QSP-20 Unclear State List for isTerminated(...) Undetermined Fixed

QSP-21 Unclear Intention for intotalApproved TokenLaunchManager Undetermined Fixed

QSP-22 Potential Violation of the Spec Informational Acknowledged

QSP-23 Inconsistent Behaviour of
addToLockedInPendingDelegations(...)

Undetermined Fixed

QSP-24 Error-prone Logic for delegated.mul(2) Informational Fixed

QSP-25 Event Emitted Regardless of Result Informational Fixed

QSP-26 Missing Input Validation Low Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the following files for security-related issues, code quality, and adherence to specification and best practices:

* ContractManager.sol
* Permissions.sol
* SkaleToken.sol
* interfaces/ISkaleToken.sol
* interfaces/delegation/IDelegatableToken.sol
* interfaces/delegation/IHolderDelegation.sol
* interfaces/delegation/IValidatorDelegation.sol
* interfaces/tokenSale/ITokenSaleManager.sol
* ERC777/LockableERC777.sol
* thirdparty/BokkyPooBahsDateTimeLibrary.sol
* delegation/*
* utils/*

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to
Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we

run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

commit sha: ab387e1• Maian

v4.1.12• Truffle

v1.1.0• Ganache

v0.5.8• SolidityCoverage

v0.2.7• Mythril

None• Securify

v0.6.6• Slither

https://github.com/MAIAN-tool/MAIAN
https://truffleframework.com/
https://truffleframework.com/ganache
https://github.com/sc-forks/solidity-coverage
https://github.com/ConsenSys/mythril
https://github.com/eth-sri/securify
https://github.com/crytic/slither

Steps taken to run the tools:

1. Cloned the MAIAN tool: git clone --depth 1 https://github.com/MAIAN-tool/MAIAN.git maian

2. Ran the MAIAN tool on each contract: cd maian/tool/ && python3 maian.py -s path/to/contract contract.sol

3. Installed Truffle: npm install -g truffle

4. Installed Ganache: npm install -g ganache-cli

5. Installed the solidity-coverage tool (within the project's root directory): npm install --save-dev solidity-coverage

6. Ran the coverage tool from the project's root directory: ./node_modules/.bin/solidity-coverage

7. Installed the Mythril tool from Pypi: pip3 install mythril

8. Ran the Mythril tool on each contract: myth -x path/to/contract

9. Ran the Securify tool: java -Xmx6048m -jar securify-0.1.jar -fs contract.sol

10. Installed the Slither tool: pip install slither-analyzer

11. Run Slither from the project directory: sslither .

Findings

QSP-1 Potentially Unsafe Use of Arithmetic Operations

Severity: High Risk

FixedStatus:

File(s) affected: (multiple)

Some arithmetic operations in the project may lead to integer underflows or underflows. Examples include (line numbers are for commit

):

Description:

50c8f4e

1. , : may underflow, which will break all distributions associated with the validator - Not
fixed (, (commit): should use SafeMath).

in commit .

Distributor.sol L72 amount - amount * feeRate / 1000
contracts/delegation/Distributor.sol L210 remediation-3 uint bounty = amount - fee;

Fixed 1da7bbd

2. , : a possibility of an underflow -Distributor.sol L77 Fixed

3. , : unsafe multiplication and addition, there may be an overflow if is set to too high or
becomes too high -
Distributor.sol L101-105 msr validatorNodes.length

Fixed

4. , -SkaleBalances.sol L89 Fixed

5. : , : unclear what the bounds of are, however, may overflow under certain conditions - Not fixed in
: should still use for the multiplication. in commit .

ValidatorService.sol L166 L178 MSR remediation-
3 SafeMath Fixed 1da7bbd

6. : : this logic should be rewritten using operations - .DelegationRequestManager.sol L74-75 SafeMath Fixed

7. : while we do not see immediate issues, we still recommended using across the board - .TimeHelpers.sol SafeMath Fixed

8. : the addition should be performed using - .ERC777/LockableERC777.sol locked + amount SafeMath Fixed

9. , and : while we do not see immediate issues, we still recommended using across the board - .DelegationController.sol L67 L71 SafeMath Fixed

Recommendation:

1. Use for all arithmetic operationsSafeMath

2. Add input validation for any values partaking in math operations, such as validating in and .feeRate Distributor.sol MSR

QSP-2 Ability to register Address that already exists

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/ValidatorService.sol, delegation/DelegationService.sol

, : It appears that a user can invoke where is an

already existing address.

Description: ValidatorService.sol L92 requestForNewAddress(...) newValidatorAddress

There are two cases. If is the validator's current address, the operation would effectively be a no-op. If it is a

different validator's address, the operation would overwrite the old in the list. As one consequence, this would break the

mapping, which would consequently invalidate any function that uses on .

Exploit Scenario: newValidatorAddress
validatorId

_validatorAddressToId getValidatorId() L197
This relates to the functions of the same name in .DelegationService.sol

Fixing the logic to disallow overwriting behavior.Recommendation:

QSP-3 Free Tokens for Owner from Testing Code

Severity: High Risk

FixedStatus:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

File(s) affected: SkaleToken.sol

, : the code labeled as "// TODO remove after testing" issues free tokens for the owner, which is, likely, undesired.Description: SkaleToken.sol L47-54

Remove the testing code.Recommendation:

QSP-4 Validator Denial-of-Service

Severity: High Risk

FixedStatus:

File(s) affected: delegation/DelegationService.sol, delegation/DelegationRequestManager.sol

It appears that a third-party can run a denial-of-service attack which causes some methods to run out of gas upon execution.Description:

Using the method of , an attacker submits multiple delegations of a low amount to a given

Validator A. The array becomes big enough to cause the methods ,

, and run out of gas. While it is unclear what a minimum validation amount is

(,) and the validator has to be trusted to be able to pick it up (,), it

looks like if the attacker has a high balance, the attack is possible.

Exploit Scenario: delegate() DelegationService
_activeByValidator[validatorId] getDelegationsForValidator

getActiveDelegationsByValidator getDelegationsTotal
DelegationRequestManager.sol L62 DelegationRequestManager.sol L65

Perform a gas analysis to identify the number of validations such that does not run out of

gas, and cap the number of delegations or increase the minimum price accordingly.

Recommendation: _activeByValidator[validatorId]

QSP-5 Unlocked Pragma

Severity: Low Risk

FixedStatus:

File(s) affected: (multiple)

Every Solidity file specifies in the header a version number of the format . The caret () before the version

number implies an unlocked pragma, meaning that the compiler will use the specified version , hence the term "unlocked."

Description: pragma solidity (^)0.5.* ^
and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a

specific Solidity version.

Recommendation:

QSP-6 Use of Experimental Features

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/*.sol

The project is using , which enables an experimental version of the ABI encoder. Experimental

features may contain bugs, such as .

Description: pragma experimental ABIEncoderV2
this

We recommend incrementing and fixing at or beyond , staying up-to-date with regards to any new

-related issues, and addressing them in a timely manner.

Recommendation: pragma solidity 0.5.7
ABIEncoderV2

QSP-7 Centralization of Power

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: (multiple)

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart

contract.

Description: owner

1. Since permits the owner of the contract to interact with any of its functions, the owner can grief any wallet by setting an arbitrarily highallow() timeLimit

2. The owner can invoke and update the balance of any wallet as desired.tokensReceived()

These issues exist for essentially any function using , which includes most contracts. For example,

can set arbitrary delegation amounts.

allow Delegation*
DelegationController.setDelegationAmount()
Apart from these:

1. The owner can change at any time, which could influence upcoming distributions of shares in
via :

setDelegationPeriod() Distributor.distribute()
L100 uint multiplier = delegationPeriodManager.stakeMultipliers(delegation.delegationPeriod);

2. In , the owner may censor validators via and .ValidatorService enableValidator() disableValidator()

Recommendation:

1. Potentially, removing the conditional from the modifiers.isOwner() allow

2. Make the centralization of power clear to end-users.

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/

: Not fixed, the provided rationale: "SKALE Network plans to communicate clearly the plans for admin control and how this will be gradually

decentralized. More importantly, admin is economically incentivized against this attack".

Update

QSP-8 Transaction-Ordering Dependency in Validator Registration

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/DelegationService.sol

In , there is transaction-ordering dependency between on and

.

Description: DelegationService.sol registerValidator() L161
DelegationService.linkNodeAddress() L180

Anyone can grief someone attempting to by calling and setting to

the value from the transaction. The registration will then fail due to of :

.

Exploit Scenario: registerValidator() linkNodeAddress() nodeAddress
msg.sender registerValidator() L67 ValidatorService.sol

require(_validatorAddressToId[validatorAddress] == 0, "Validator with such address already exists");

Transaction-ordering is often difficult to fix without introducing changes to system design. However, we are just bringing the potential

issue to the team's attention.

Recommendation:

QSP-9 Unintentional Locking of Tokens upon Cancelation

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/TokenState.sol

, : the logic enables the possibility of ending up having locked more tokens than expected.Description: TokenState.sol L205

Exploit Scenario:

1. A user gets 20 tokens from the token sale (and they are, therefore, locked)

2. The user receives a transfer of 5 tokens from someone else

3. The user requests a delegation of 25 tokens

4. The user's delegation gets canceled

5. The user ends up having 25 locked tokens instead of the original 20 tokens.

Reconsider the logic in .Recommendation: TokenState.sol

QSP-10 Validator Registration "Spamming"

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: delegation/DelegationService.sol

The method is open to the public: anyone can call it and spam the network with registering arbitrary addresses

as validators. This will pollute the contract with validator entries that do not do anything yet have an impact on the smart contract's state. For instance,

would become high but this would not reflect the actual state of the network.

Description: registerValidator()

numberOfValidators

We suggest adding a mechanism for preventing adding arbitrary validator registrations. Alternatively, making it so that adding new

validators does not affect the contract state (e.g., calculate differently, e.g., only adding up trusted validators).

Recommendation:

numberOfValidators
Unresolved, the rationale: "validators must pay for gas to register, so this naturally reduces DoS. Receiving a validator ID does not allow the user

to do anything special - unless they are a part of whitelist." However, as of , there is an added issue, see .

Update:

remediation-3 QSP-16

: The implications of this issue are mitigated in .Update 8c6a218

QSP-11 Misusing / /require() assert() revert()

Severity: Informational

AcknowledgedStatus:

File(s) affected: thirdparty/BokkyPooBahsDateTimeLibrary.sol, delegation/DelegationController.sol

, , and all have their own specific uses and should not be switched around.Description: require() revert() assert()

checks that certain preconditions are true before a function is run.• require()

, when hit, will undo all computation within the function.• revert()

is meant for checking that certain invariants are true. An failure implies something that should never happen, such as integer overflow,
has occurred.

• assert() assert()

Recommendation:

1. : use instead of on lines , , , , , , , , , , , andBokkyPooBahsDateTimeLibrary.sol assert require 217 232 236 240 244 248 262 277 281 285 289 293

2. , use instead of on lines , , and .DelegationController.sol assert require L134 L165 L193

only fixed in . However, this is up to the Skale Labs team to decide whether the date-time library should be fixed

or not.

Update: DelegationController.sol

the team made a decision to not update the date-time library, which is fair in this case.Update:

QSP-12 Stubbed Functions in DelegationService

Severity: Informational

FixedStatus:

File(s) affected: delegation/DelegationService.sol

There are several stubbed functions in this contract, e.g., on or

on , which seem important, particularly, since no events are emitted that would easily alert a

delegator that a new delegation offer is associated with them.

Description: listDelegationRequests() L90
getDelegationRequestsForValidator() L156

Consider implementing the stubbed functions.Recommendation:

QSP-13 Unhandled Edge Case in Validator Existence Check

Severity: Informational

FixedStatus:

File(s) affected: delegation/DelegationService.sol

, : incorrectly returns if the input is , which could affect any function with

the modifier . Note that defines the first validator and ID 1.

Description: ValidatorService.sol L181 validatorExists() true 0
checkValidatorExists() L69 validatorId = ++numberOfValidators;

Return when the validator address argument is provided as .Recommendation: false 0

QSP-14 Potentially Unsafe Use of Loops

Severity: Informational

FixedStatus:

File(s) affected: (multiple)

"For" loops are used throughout to iterate over active delegations or distribution shares. Examples include (with the respective. bounds):Description:

: :• DelegationController.sol L75-79, L115-128, L132-137, L182-187, L191-197
_activeByValidator[validatorId].length

: :• DelegationController.sol L154-159, L163-169 _delegationsByHolder[holderAddress].length

: :• delegation/DelegationService.sol L103-105 shares.length

: :• delegation/Distributor.sol L95-107, L109-117 activeDelegations.length

: :• delegation/TokenState.sol L63-69, L76-82 delegationIds.length

: :• delegation/TokenState.sol L161-163 _endingDelegations[holder].length

: :• delegation/TokenState.sol L246-256 _endingDelegations[delegation.holder].length

If the value of a loop's upper bound is very high, it may cause a transaction to run out of gas and potentially lead to other higher-severity issues, such as

.QSP-4

We recommend running gas analysis for the loops. This would identify the viable bounds for each loop, which consequently could be

used for adding constraints to prevent overflows.

Recommendation:

this instance was fixed, however, there are now more potential issues with loops, see .Update: QSP-17

QSP-15 Denial-of-Service (DoS)

Severity: Medium Risk

FixedStatus:

File(s) affected: ConstantsHolder.sol

: The owner can overwrite the at any point using . It is

unclear why this functionality is necessary, but if abused (with a low likelihood) and set to a time very far into the future, it could lock the two

functions and .

Description: ConstantsHolder.sol, L165 launchTimestamp setLaunchTimestamp()

Distributor withdrawBounty() withdrawFee()

Consider removing the ability to override the launch timestamp.Recommendation:

: fixed in and .Update 8652d74 0164b22

QSP-16 Denial-of-Service (DoS)

Severity: Low Risk

FixedStatus:

File(s) affected: ValidatorService.sol

: iterates over all validator entries. However, as per , any party can

arbitrarily submit requests that increment . While block gas limits should not be an issue for

external view methods, the method may end up iterating over many unconfirmed validators, which could extend the load or execution time of the

Ethereum node that executes the method.

Description: L127 getTrustedValidators(...) numberOfValidators QSP-10
registerValidator(...) numberOfValidators

Consider tracking trusted validators differently, in order to avoid iterating over unconfirmed validators.Recommendation:

QSP-17 Potentially Unsafe Use of Loops (2)

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: delegation/DelegationController.sol, delegation/ValidatorService.sol, delegation/TokenState.sol

We found the following locations in code where for loops are still used:Description:

1. In , there are two invocations of the method: ,

: . They both use the overloaded instance of that does not take as an

input parameter:

DelegationController.sol processAllSlashes(...) processAllSlashes(holder);
L339 processAllSlashes(msg.sender) processAllSlashes limit

function processAllSlashes(address holder) public {
processSlashes(holder, 0);

}

This eventually calls with the limit set to (or, unlimited).processSlashesWithoutSignals(...) 0
In addition, : , : , and :

also call with the

limit set to .

L201 processSlashesWithoutSignals(holder) L231 processSlashesWithoutSignals(msg.sender); L280
processSlashesWithoutSignals(delegations[delegationId].holder); processSlashesWithoutSignals(...)

0
If the limit is set to , sets as the bound for the loop. If happens to contain too many slashes,

there is a chance for the loop at to cause a "block gas limit exceeded" issue.

0 L899 _slashes.length end _slashes.length
L903 for (; index < end; ++index) {

2. Similarly, in , has a for-loop: if there are too many slashing signals, a block gas limit

issue could be hit.

DelegationController.sol sendSlashingSignals(...)

3. In , and contain use of potentially unbounded loops. Block gas limits are more difficult to exceed

because it requires a specific validator to register too many node addresses, however, we are highlighting it for awareness.

delegation/ValidatorService.sol L305 L337

4. : iterations over the lockers could, in theory, lead to the "block out of gas exceptions". However, since the methods

are , the risk is pretty low assuming the responsibility of the owner.

delegation/TokenState.sol
ownerOnly

Perform gas analysis and define mitigation strategies for the loops in and

to ensure the block gas limit is never hit, and none of the contract methods are blocked due to this. Cap the number of

slashings if possible.

Recommendation: DelegationController.sol
ValidatorService.sol

Update:

The Skale Labs team provided the following responses (quoted):

1. Issue is known and acceptable because initial network phases will operate with slashing off to verify very low probability of slashing events. It is expected that
slashing will be rare event, and in the exceptional case of many slashing events, it is possible to batch executions.

2. Same as above in 1.

3. Acknowledged and optimization is planned. For initial network phases it will be difficult to exceed as the Quantstamp team notes.

4. There will only be 3-4 total lockers.

QSP-18 Lack of Array Length Reduction

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/ValidatorService.sol, delegation/TokenLaunchLocker.sol

There are two instances when an array item is removed but the array length is not explicitly reduced:Description:

1. , : The lack of length reduction of is likely unintentional after

- in .

ValidatorService.sol L212 validatorNodes.length delete
validators[validatorId].nodeIndexes[validatorNodes.length.sub(1)]; Fixed 7e040bf

2. , : : may also need to reset the array lengths for

and . (code removed).

delegation/TokenLaunchLocker.sol L237 deletePartialDifferencesValue(...)
sequence.addDiff sequence.subtractDiff Fixed

Add length decrements where appropriate.Recommendation:

QSP-19 Unclear Purpose of the Assignment

Severity: Undetermined

FixedStatus:

File(s) affected: delegation/DelegationController.sol

, : the purpose of the assignment

is not clear.

Description: In delegation/DelegationController.sol L609
_firstUnprocessedSlashByHolder[holder] = _slashes.length;

Clarify the purpose. Improve the developer documentation.Recommendation:

the team has provided a clarification:Update:

`_slashes` is a list of all slashing events that have occurred in the network.
When skale-manager calculates the amount of locked tokens, it iterates over this list. Each item is processed
only once. When a token holder creates their first delegation, it is set first as an unprocessed slash as
`_slashes.length` to avoid processing of all slashed before that. This obviously does not affect the holder.

QSP-20 Unclear State List for isTerminated(...)

Severity: Undetermined

FixedStatus:

File(s) affected: delegation/DelegationController.sol

Currently, in , includes two states: and .

However, there is also the state, which seems to be unaccounted for, and it is unclear if this is intentional. Note that this affects the

function below.

Description: delegation/DelegationController.sol isTerminated() COMPLETED REJECTED
CANCELED

isLocked()

Clarifying the intention and accounting for the state as needed.Recommendation: CANCELED
: the logic has been removed from the code in .Update 1da7bbd

QSP-21 Unclear Intention for intotalApproved TokenLaunchManager

Severity: Undetermined

FixedStatus:

File(s) affected: delegation/TokenLaunchManager.sol

It is not clear if the require-statement on : will work

as intended. The only accounts for the new values passed into the function but does not consider approval amounts made previously.

It is unclear which is desirable here.

Description: L60 require(totalApproved <= getBalance(), "Balance is too low");
totalApproved

Clarifying the intention and fixing as necessary.Recommendation:

: the logic has been updated to count the approvals globally.Update

QSP-22 Potential Violation of the Spec

Severity: Informational

AcknowledgedStatus:

File(s) affected: delegation/TokenState.sol

In , if a locker such as the is removed via , parts of the spec will not be

enforced, e.g., "Slashed funds will be held in an escrow account for the first year.".

Description: delegation/TokenState.sol Punisher removeLocker()

Clarifying the intention and fixing as necessary.Recommendation:

the team has provided an explanation that the owner is de-incentivized from harming the network. No fix is provided.Update:

QSP-23 Inconsistent Behaviour of addToLockedInPendingDelegations(...)

Severity: Undetermined

FixedStatus:

File(s) affected: delegation/DelegationController.sol

In , : the behaviour of is inconsistent

with the behaviour of : in the latter case, the is being subtracted from the existing

amount, while in the former, it simply overwrites with the new `amount.

Description: delegation/DelegationController.sol L571 addToLockedInPendingDelegations(...)
subtractFromLockedInPerdingDelegations(...) amount

_lockedInPendingDelegations[holder].amount

Clarifying the intention of the method and fixing as necessary.Recommendation: addToLockedInPendingDelegations(...)
: the logic has been updated, and is now consistent with

.

Update addToLockedInPendingDelegations(...)
subtractFromLockedInPerdingDelegations(...)

QSP-24 Error-prone Logic for delegated.mul(2)

Severity: Informational

FixedStatus:

File(s) affected: delegation/TokenLaunchHolder.sol

In , both :

and : contain the

"magic" value of . This makes the logic error-prone, as the constant is scattered around while lacking a developer documentation.

Description: delegation/TokenLaunchHolder L117 if (_totalDelegatedAmount[wallet].delegated.mul(2) >=
_locked[wallet] && L163 if (_totalDelegatedAmount[holder].delegated.mul(2) < _locked[holder]) {

2

Centralizing the constant, defining it in a single place. Improving the documentation accordingly.Recommendation:

: Fixed in .Update 1da7bbd

QSP-25 Event Emitted Regardless of Result

Severity: Informational

FixedStatus:

File(s) affected: delegation/TokenState.sol

In , : the event is emitted regardless of whether the locked gets removed or not.Description: delegation/TokenState.sol L73

Confirming if this behaviour is intentional and fixing it as necessary.Recommendation:

: Fixed in .Update 1da7bbd

QSP-26 Missing Input Validation

Severity: Low Risk

FixedStatus:

File(s) affected: delegation/TokenLaunchManager.sol, contracts/Permissions.sol

The following locations are missing input parameter validation:Description:

1. , : should check that is a non-zero address.delegation/TokenLaunchManager.sol L74 seller

2. , : should check that is a non-zero address while is above zero.delegation/TokenLaunchManager.sol L56 walletAddress[i] value[i]

3. , : should be checked to be non-zero.contracts/Permissions.sol L36 _contractManager

Adding the missed input validation.Recommendation:

: Fixed in .Update 1da7bbd

Adherence to Specification

Generally, it is difficult to assess full adherence to the specification since the specification is incomplete, and the code appears to be poorly

documented. This remains to be an issue for the latest commit . For the commit :remediation-3 50c8f4e

, : the requirement described in the comment
is actually not enforced in the code. in .

• delegation/DelegationPeriodManager.sol L43 remove only if there is no guys
that stacked tokens for this period Fixed bd17697

: : We believe the is used because "Delegation requests are always for the next epoch (month)." as per the Spec
document, but this should be clarified in the code directly. (code removed).

• delegation/TimeHelpers.sol L42 + 1
Fixed

: - the rationale for the logic in this function is not documented, and therefore,
is difficult to assess. (code refactored).

• delegation/TimeHelpers.sol calculateDelegationEndTime()
Fixed

Code Documentation

The code appears to be poorly documented. The function descriptions from the Spec document should be directly inlined in the code. The coupling of

the contracts with various statements makes the architecture difficult to follow. In addition, there are grammatical errors in documentation,

and we suggest spell-checking all the comments in the project. This remains to be an issue for the latest commit as well, while some of

the issues highlighted for commit were fixed.

allow()
remediation-3

50c8f4e

:For the commit 50c8f4e

1. , : The function increases the allowance of each wallet address (on). This should be
documented, since the typical function sets the approval to the new value. The semantics of this function more closely relates to

. : in .

delegation/TokenSaleManager.sol L47 approve() += L51
ERC20.approve()

increaseApproval() Fixed 1da7bbd

2. , : a typo: "begining". (removed).interfaces/delegation/IHolderDelegation.sol L26 Fixed

3. , : "it's" -> 'its". (removed).interfaces/delegation/IHolderDelegation.sol L34 Fixed

4. : : "for this moment in skale manager system by human name." Perhaps, changing this to "This contract contains the current
mapping from contract IDs (in the form of human-readable strings) to addresses."`. (removed).
ContractManager.sol L27

Fixed

5. , (similar on): "is not equal zero" -> "is not equal to zero". (removed).ContractManager.sol L43 L44 Fixed

6. , : "is not contain code" -> "does not contain code". (removed).ContractManager.sol L54 Fixed

7. , : typo in "epmtyArray". (removed).delegation/ValidatorService.sol L68 Fixed

8. : : "specify" -> "the specified". .SkaleToken.sol L58 Fixed

9. , : typo: "founds" -> "found". .delegation/DelegationService.sol L251 Fixed

:For the commit remediation-3

1. , : : a potential typo
(seems to be the intended name). .
delegation/DelegationController.sol L582 subtractFromLockedInPerdingDelegations(...)
subtractFromLockedInPendingDelegations Fixed

2. , : - a typo. .ConstantsHolder.sol L146 iverloaded Fixed

3. , : The event field is misspelled. .DelegationPeriodManager.sol L32 legth Fixed

Adherence to Best Practices

:For the commit 50c8f4e

1. , : this could be replaced by the which contains more robust checks for contracts. .ContractManager.sol L49-54 Open Zeppelin Address library Not fixed

2. Favour using instead of . .uint256 uint Not fixed

3. Cyclic imports in . Generally, the architecture is a bit hard to follow. .delegation/* Not fixed

4. The contracts use almost no events, which could make contract monitoring more difficult than necessary. (now events are used).Fixed

5. , : commented out code and a TODO. (file removed).interfaces/delegation/IValidatorDelegation.sol L53-54 Fixed

6. , (and similarly,):
could simply be . .

delegation/ValidatorService.sol L136 L127 return getValidatorId(validatorAddress) == validatorId ?
true : false return getValidatorId(validatorAddress) == validatorId Not fixed

7. , : The constructor should check that is non-zero. in .Permissions.sol L68 newContractsAddress Fixed c671839

8. , : can simplify to . .delegation/DelegationPeriodManager.sol L35 return stakeMultipliers[monthsCount] != 0; Not fixed

9. , : a leftover TODO. .delegation/TokenState.sol L132 Fixed

10. , : a modifier is commented out, need to confirm if it is intentional or not. (confirmed it is a comment).SkaleToken.sol L75 Addressed

11. , : is not the most intuitive name, because it actually modifies the contract's state. Suggesting
naming it . The same applies to the methods , ,

, and other files, such as on , . .

delegation/DelegationController.sol L78 getState
refreshState getActiveDelegationsByValidator getDelegationsTotal

getDelegationsByHolder getDelegationsForValidator getPurchasedAmount TokenState.sol L159 Fixed

12. , : should check that and are non-zero.
.

delegation/DelegationService.sol L180 linkNodeAddress() nodeAddress validatorAddress
Fixed

13. and : ,
is unnecessary. (a false-positive).

interfaces/delegation/IValidatorDelegation.sol delegation/DelegationController.sol L21 pragma experimental
ABIEncoderV2; Fixed

14. , : usused variable . .delegation/DelegationController.sol L78 state Fixed

15. , : unless the order matters, instead of running the inner loop (), could move the last element into
. .

delegation/TokenState.sol L246-256 L249-251
_endingDelegations[delegation.holder][i] Fixed

16. , : should check that is non-zero. .delegation/ValidatorService.sol L56 registerValidator() validatorAddress Fixed

:For the commit remediation-3

1. : the structs and look very similar: the purpose for

having both remains unclear. Also, it does not follow a naming practice of not using the word “Value”

DelegationPeriodManager.sol PartialDifferencesValue PartialDifferences

2. : readability and potential error-proneness of the method. The code of

seems to be complex. The function has five overloads, and two of them have overlap. The logic

of calculating the differences is intertwined with the handling of corner cases of . The overloads of at and

have significant overlaps, and it is unclear why both are needed.

DelegationPeriodManager.sol reduce(...)
delegation/DelegationConroller.sol reduce

firstUnprocessedMonth reduce L780
L815

3. : and : and

seem to be identical - any reason for having two different methods?

DelegationPeriodManager.sol L250 L254 getAndUpdateLockedAmount(...)
getAndUpdateForbiddenForDelegationAmount(...)

4. , : could be replaced with

instead of repeatedly adding to each term

DelegationPeriodManager.sol L289-313 currentMonth.add(1) delegations[delegationId].started
1

5. , : naming does not differentiate the units, which could lead to bugs:DelegationPeriodManager.sol L55-56

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol

uint created; // time of creation - measured as a timestamp
uint started; // month when a delegation becomes active - measured in months

6. , : changes its meaning after a re-assignment, this is not recommended.DelegationPeriodManager.sol L642 i

for (uint i = startMonth; i > 0 && i < delegations[delegationId].finished; i =
_slashesOfValidator[validatorId].slashes[i].nextMonth) {

1. : fraction and GCD methods should be placed in a separate file.DelegationPeriodManager.sol

2. , : should be a shared constantdelegation/ValidatorService.sol L99 1000

3. , and : is unnecessarydelegation/ValidatorService.sol L186 L194 ? true : false;

4. , : could bedelegation/DelegationPeriodManager.sol L38 return stakeMultipliers[monthsCount] != 0 ? true : false;
return (stakeMultipliers[monthsCount] != 0)

5. , : the constant should be defined as a named constant at the contract leveldelegation/Distributor.sol L83 3

6. , :
the message should say “Fee is locked”

delegation/Distributor.sol L108 require(now >= timeHelpers.addMonths(constantsHolder.launchTimestamp(), 3),
"Bounty is locked");

7. , : duplicate definitions of and : already
defined in .
delegation/TokenLaunchLocker.sol L46 PartialDifferencesValue getAndUpdateValue(...)

DelegationController.sol

8. , : is unused (outside tests).utils/MathUtils.sol L40 boundedSubWithoutEvent(...)

9. , : the amount emitted in should possibly be in the case that
.

delegation/Punisher.sol L68 Forgive() _locked[holder] amount >
_locked[holder]

10. : the function should have the require check that
similar to in . Otherwise, this function could potentially shorten the list of validators without actually finding the
correct one.

delegaion/ValidatorService.sol deleteNode() position < validatorNodes.length
checkPossibilityToMaintainNode()

11. : the internal function on does not appear to be used.delegation/DelegationController.sol init() L628

12. : The else-branch on of can never be reached due to and . It is not clear what the
intended semantics here. Likely, needs a similar to .
delegation/DelegationController.sol L698 add() L686 L688

L686 .add(1) L703

13. : The if-conditional on can never fail due to
the require-condition on , and should be removed.
delegation/DelegationController.sol L725 sequence.firstUnprocessedMonth <= month

L720 month.add(1) >= sequence.firstUnprocessedMonth

14. : Lots of duplicate code in the two functions on and .delegation/DelegationController.sol reduce() L780 L815

15. : The require on : is not
necessary due to the use of directly below.
delegation/DelegationController.sol L586 _lockedInPendingDelegations[holder].amount >= amount

.sub()

Test Results

Test Suite Results

For the commit , within the scope of the audit, two tests have failed on our side.

We re-ran the tests for the commit , and they all passed.

remediation-3
9d60180

Contract: ContractManager
✓ Should deploy
✓ Should add a right contract address (ConstantsHolder) to the register (100ms)

Contract: Delegation
when holders have tokens and validator is registered

✓ should check 1 month delegation period availability
✓ should not allow to send delegation request for 1 month (421ms)
✓ should check 2 months delegation period availability (49ms)
✓ should not allow to send delegation request for 2 months (379ms)
✓ should check 3 months delegation period availability
✓ should check 4 months delegation period availability
✓ should not allow to send delegation request for 4 months (299ms)
✓ should check 5 months delegation period availability
✓ should not allow to send delegation request for 5 months (324ms)
✓ should check 6 months delegation period availability
✓ should check 7 months delegation period availability
✓ should not allow to send delegation request for 7 months (333ms)
✓ should check 8 months delegation period availability
✓ should not allow to send delegation request for 8 months (327ms)
✓ should check 9 months delegation period availability
✓ should not allow to send delegation request for 9 months (331ms)
✓ should check 10 months delegation period availability
✓ should not allow to send delegation request for 10 months (351ms)
✓ should check 11 months delegation period availability
✓ should not allow to send delegation request for 11 months (336ms)
✓ should check 12 months delegation period availability
✓ should check 13 months delegation period availability
✓ should not allow to send delegation request for 13 months (370ms)
✓ should check 14 months delegation period availability

✓ should not allow to send delegation request for 14 months (300ms)
✓ should check 15 months delegation period availability
✓ should not allow to send delegation request for 15 months (335ms)
✓ should check 16 months delegation period availability
✓ should not allow to send delegation request for 16 months (573ms)
✓ should check 17 months delegation period availability
✓ should not allow to send delegation request for 17 months (345ms)
✓ should check 18 months delegation period availability
✓ should not allow to send delegation request for 18 months (349ms)
✓ should not allow holder to delegate to unregistered validator (320ms)
✓ should calculate bond amount if validator delegated to itself (2725ms)
✓ should calculate bond amount if validator delegated to itself using different periods (2601ms)
✓ should bond equals zero for validator if she delegated to another validator (3819ms)
✓ should be possible for N.O.D.E. foundation to spin up node immediately (461ms)

Reduce holders amount to fit Travis timelimit
✓ should be possible to distribute bounty accross thousands of holders (23927ms)
when delegation period is 3 months

✓ should send request for delegation (575ms)
when delegation request is sent

✓ should not allow to burn locked tokens (796ms)
✓ should not allow holder to spend tokens (2199ms)
✓ should allow holder to receive tokens (448ms)
✓ should accept delegation request (455ms)
✓ should unlock token if validator does not accept delegation request (1152ms)
when delegation request is accepted

✓ should extend delegation period if undelegation request was not sent (6710ms)
when delegation period is 6 months

✓ should send request for delegation (740ms)
when delegation request is sent

✓ should not allow to burn locked tokens (789ms)
✓ should not allow holder to spend tokens (2758ms)
✓ should allow holder to receive tokens (396ms)
✓ should accept delegation request (528ms)
✓ should unlock token if validator does not accept delegation request (1382ms)
when delegation request is accepted

✓ should extend delegation period if undelegation request was not sent (7343ms)
when delegation period is 12 months

✓ should send request for delegation (671ms)
when delegation request is sent

✓ should not allow to burn locked tokens (685ms)
✓ should not allow holder to spend tokens (2252ms)
✓ should allow holder to receive tokens (616ms)
✓ should accept delegation request (394ms)
✓ should unlock token if validator does not accept delegation request (1397ms)
when delegation request is accepted

✓ should extend delegation period if undelegation request was not sent (6210ms)
when 3 holders delegated

✓ should distribute funds sent to Distributor across delegators (5112ms)
Slashing

✓ should slash validator and lock delegators fund in proportion of delegation share (4354ms)
✓ should not lock more tokens than were delegated (1838ms)
✓ should allow to return slashed tokens back (1415ms)
✓ should not pay bounty for slashed tokens (2847ms)
✓ should reduce delegated amount immediately after slashing (625ms)
✓ should not consume extra gas for slashing calculation if holder has never delegated (3706ms)

Contract: DelegationController
when arguments for delegation initialized

✓ should reject delegation if validator with such id does not exist (281ms)
✓ should reject delegation if it doesn't meet minimum delegation amount (282ms)
✓ should reject delegation if request doesn't meet allowed delegation period (344ms)
✓ should reject delegation if holder doesn't have enough unlocked tokens for delegation (952ms)
✓ should send request for delegation (876ms)
✓ should reject delegation if it doesn't have enough tokens (2037ms)
✓ should reject canceling if delegation doesn't exist (63ms)
✓ should allow to delegate if whitelist of validators is no longer supports (1324ms)
when delegation request was created

✓ should reject canceling request if it isn't actually holder of tokens (67ms)
✓ should reject canceling request if validator already accepted it (448ms)
✓ should reject canceling request if delegation request already rejected (248ms)
✓ should change state of tokens to CANCELED if delegation was cancelled (209ms)
✓ should reject accepting request if such validator doesn't exist (126ms)
✓ should reject accepting request if validator already canceled it (364ms)
✓ should reject accepting request if validator already accepted it (565ms)
✓ should reject accepting request if next month started (526ms)
✓ should reject accepting request if validator tried to accept request not assigned to him (295ms)
✓ should allow for QA team to test delegation pipeline immediately (2015ms)
when delegation is accepted

✓ should allow validator to request undelegation (530ms)
✓ should not allow everyone to request undelegation (713ms)

Contract: PartialDifferences
✓ should calculate sequences correctly (1345ms)

Contract: TokenLaunchManager
✓ should register seller (177ms)
✓ should not register seller if sender is not owner (81ms)
when seller is registered

✓ should not allow to approve transfer if sender is not seller (59ms)
✓ should fail if parameter arrays are with different lengths (67ms)
✓ should not allow to approve transfers with more then total money amount in sum (156ms)
✓ should not allow to retrieve funds if it was not approved (114ms)
✓ should not allow to retrieve funds if launch is not completed (159ms)
✓ should allow seller to approve transfer to buyer (1735ms)
✓ should allow seller to change address of approval (851ms)
✓ should allow seller to change value of approval (702ms)
when holder bought tokens

✓ should lock tokens (748ms)
✓ should not unlock purchased tokens if delegation request was cancelled (1506ms)
✓ should be able to delegate part of tokens (4713ms)

✓ should unlock all tokens if 50% was delegated for 90 days (3020ms)
✓ should unlock no tokens if 40% was delegated (2451ms)
✓ should unlock all tokens if 40% was delegated and then 10% was delegated (5434ms)
✓ should unlock tokens after 3 month after 50% tokens were used (3733ms)
✓ should unlock tokens if 50% was delegated and then slashed (2787ms)
✓ should not lock free tokens after delegation request cancelling (2929ms)

Contract: DelegationController
✓ should not lock tokens by default (205ms)
✓ should not allow to get state of non existing delegation
when delegation request is sent

✓ should be in `proposed` state (98ms)
✓ should automatically unlock tokens after delegation request if validator don't accept (270ms)
✓ should allow holder to cancel delegation before acceptance (744ms)
✓ should not allow to accept request after end of the month (510ms)
when delegation request is accepted

✓ should allow to move delegation from proposed to accepted state (261ms)
✓ should not allow to request undelegation while is not delegated (161ms)
✓ should not allow to cancel accepted request (168ms)
when 1 month was passed

✓ should become delegated (256ms)
✓ should allow to send undelegation request (923ms)

Contract: ValidatorService
✓ should register new validator (155ms)
✓ should reject if validator tried to register with a fee rate higher than 100 percent (61ms)
when validator registered

✓ should reject when validator tried to register new one with the same address (64ms)
✓ should reset name, description, minimum delegation amount (203ms)
✓ should link new node address for validator (138ms)
✓ should reject if linked node address tried to unlink validator address (150ms)
✓ should reject if validator tried to override node address of another validator (333ms)
✓ should not link validator like node address (220ms)
✓ should unlink node address for validator (460ms)
✓ should not allow changing the address to the address of an existing validator (168ms)
✓ should reject when someone tries to set new address for validator that doesn't exist (60ms)
✓ should reject if validator tries to set new address as null (61ms)
✓ should reject if provided validatorId equals zero (65ms)
✓ should return list of trusted validators (442ms)
when validator requests for a new address

✓ should reject when hacker tries to change validator address (89ms)
✓ should set new address for validator (153ms)

when holder has enough tokens
✓ should allow to enable validator in whitelist (112ms)
✓ should allow to disable validator from whitelist (311ms)
✓ should not allow to send delegation request if validator isn't authorized (284ms)
✓ should allow to send delegation request if validator is authorized (525ms)
✓ should be possible for the validator to enable and disable new delegation requests (1642ms)

Contract: SkaleManager
✓ should fail to process token fallback if sent not from SkaleToken (80ms)
✓ should transfer ownership (199ms)
when validator has delegated SKALE tokens

✓ should create a node (588ms)
✓ should not allow to create node if validator became untrusted (1047ms)
when node is created

✓ should fail to init exiting of someone else's node (180ms)
✓ should initiate exiting (370ms)
✓ should remove the node (457ms)
✓ should remove the node by root (410ms)

when two nodes are created
✓ should fail to initiate exiting of first node from another account (168ms)
✓ should fail to initiate exiting of second node from another account (168ms)
✓ should initiate exiting of first node (382ms)
✓ should initiate exiting of second node (389ms)
✓ should remove the first node (416ms)
✓ should remove the second node (436ms)
✓ should remove the first node by root (410ms)
✓ should remove the second node by root (756ms)
✓ should check several monitoring periods (5157ms)

when 18 nodes are in the system
✓ should fail to create schain if validator doesn't meet MSR (449ms)
✓ should fail to send monitor verdict from not node owner (146ms)
✓ should fail to send monitor verdict if send it too early (172ms)
✓ should fail to send monitor verdict if sender node does not exist (148ms)
✓ should send monitor verdict (258ms)
✓ should send monitor verdicts (433ms)
when monitor verdict is received

✓ should store verdict block
✓ should fail to get bounty if sender is not owner of the node (120ms)
✓ should estimate bounty (277ms)
✓ should get bounty (3190ms)

when monitor verdict with downtime is received
✓ should store verdict block
✓ should fail to get bounty if sender is not owner of the node (271ms)
✓ should get bounty (4312ms)
✓ should get bounty after break (4211ms)
✓ should get bounty after big break (4157ms)

when monitor verdict with latency is received
✓ should store verdict block
✓ should fail to get bounty if sender is not owner of the node (115ms)
✓ should get bounty (3389ms)
✓ should get bounty after break (3186ms)
✓ should get bounty after big break (6498ms)

when developer has SKALE tokens
✓ should create schain (3345ms)
when schain is created

✓ should fail to delete schain if sender is not owner of it (213ms)
✓ should delete schain (2039ms)
✓ should delete schain after deleting node (4645ms)

when another schain is created
✓ should fail to delete schain if sender is not owner of it (180ms)
✓ should delete schain by root (2712ms)

when 32 nodes are in the system
when developer has SKALE tokens

✓ should create 2 medium schains (6351ms)
when schains are created

✓ should delete first schain (2249ms)
✓ should delete second schain (2254ms)

when 16 nodes are in the system
✓ should create 16 nodes & create & delete all types of schain (38429ms)

Contract: SkaleToken
✓ should have the correct name
✓ should have the correct symbol
✓ should have the correct decimal level
✓ should return the сapitalization of tokens for the Contract
✓ owner should be equal owner (41ms)
✓ should check 10 SKALE tokens to mint (38ms)
✓ the owner should have all the tokens when the Contract is created
✓ should return the total supply of tokens for the Contract
✓ any account should have the tokens transferred to it (424ms)
✓ should not let someone transfer tokens they do not have (1006ms)
✓ an address that has no tokens should return a balance of zero
✓ an owner address should have more than 0 tokens
✓ should emit a Transfer Event (335ms)
✓ allowance should return the amount I allow them to transfer (84ms)
✓ allowance should return the amount another allows a third account to transfer (81ms)
✓ allowance should return zero if none have been approved for the account
✓ should emit an Approval event when the approve method is successfully called (57ms)
✓ holder balance should be bigger than 0 eth
✓ transferFrom should transfer tokens when triggered by an approved third party (404ms)
✓ the account funds are being transferred from should have sufficient funds (1000ms)
✓ should throw exception when attempting to transferFrom unauthorized account (685ms)
✓ an authorized accounts allowance should go down when transferFrom is called (428ms)
✓ should emit a Transfer event when transferFrom is called (394ms)
✓ should emit a Minted Event (420ms)
✓ should emit a Burned Event (320ms)
✓ should not allow reentrancy on transfers (1790ms)
✓ should not allow to delegate burned tokens (2591ms)
✓ should parse call data correctly (423ms)

Contract: MathUtils
✓ should properly compare (42ms)
✓ should properly approximately check equality (80ms)
in transaction

✓ should subtract normally if reduced is greater than subtracted
3
string

✓ should return 0 if reduced is less than subtracted and emit event (74ms)
in call

✓ should subtract normally if reduced is greater than subtracted
✓ should return 0 if reduced is less than subtracted

Code Coverage

:For the commit 50c8f4e

The contracts that are in-scope are generally well-covered with tests: for most files, test coverage exceeds 90%. However, some lines could use additional

coverage, such as:

, : testing delegation completion• delegation/DelegationController L119-120

, : testing an edge case for slashing forgiveness• delegation/TokenState.sol L121

, : testing bounty locking• delegation/SkaleBalances L74-75

The third-party library has a coverage of only 23.77%, however, it appears to have its own test suite in the

upstream repository.

BokkyPooBahsDateTimeLibrary.sol

, we recommend improving branch coverage for the files that are lacking coverage. For specifically,

test coverage seems to be low at the commit we are auditing.

For the commit remediation-3 TokenState.sol

We re-ran the tests for the commit , and some files still have low coverage, including . We recommend improving

code coverage.

Update: 9d60180 TokenState.sol

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 95.74 74.59 95.69 95.84

ConstantsHolder.sol 84 25 72.73 84 192,196,200,201

ContractManager.sol 100 62.5 100 100

Decryption.sol 100 100 100 100

ECDH.sol 95.77 75 100 95.77 160,187,229

Monitors.sol 97.44 90.63 95 97.62 127,218,276

File % Stmts % Branch % Funcs % Lines Uncovered Lines

Nodes.sol 98.56 78.26 97.37 98.04 356,509,538

Permissions.sol 88.89 60 83.33 84.62 76,82

Pricing.sol 97.67 85.71 100 97.67 74

Schains.sol 94.81 72 94.74 94.74 … 229,230,231

SchainsInternal.sol 93.85 85.71 94.12 94.34 … 549,648,734

SkaleDKG.sol 95.3 58.33 100 96.15 … 176,478,489

SkaleManager.sol 96.75 76 100 96.75 257,292,314,366

SkaleToken.sol 100 66.67 100 100

SkaleVerifier.sol 94.74 78.57 100 94.74 61

SlashingTable.sol 100 100 100 100

contracts/delegation/ 93.3 75.31 95.95 93.06

DelegationController.sol 95.59 84.88 96 95.57 … 736,748,786

DelegationPeriodManager.sol 71.43 100 66.67 71.43 55,57

Distributor.sol 94.29 69.23 100 94.29 179,186,208,214

PartialDifferences.sol 89.11 76.09 100 90 … 295,296,299

Punisher.sol 100 50 100 94.44 94

TimeHelpers.sol 100 50 100 100

TokenLaunchLocker.sol 97.78 77.27 100 97.96 89

TokenLaunchManager.sol 100 68.75 100 100

TokenState.sol 64 0 80 59.26 … 104,105,106

ValidatorService.sol 94.32 78.26 93.75 94.68 … 394,420,437

contracts/utils/ 98.06 76.32 97.22 98.11

FieldOperations.sol 96.92 83.33 100 96.92 171,250

FractionUtils.sol 94.44 50 83.33 94.44 43

MathUtils.sol 100 87.5 100 100

Precompiled.sol 100 50 100 100

StringUtils.sol 100 100 100 100

All files 95.12 75 95.91 95.1

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the
security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential
vulnerability that was not within the scope of the review.

Contracts

3b5f554e5cb3ba6e111b3bf89c21fe4f20640da5a10e87bcb4670eccc3329d62 ./contracts/ContractManager.sol

e2a5194a012c8dbda09796f9d636a3b0ca9f926f9368ce3d4a5d41f9b05ed908 ./contracts/Permissions.sol

6c233479d7dca03fd9524e1fd5991e60cd4e15b049b61e4ad5200039076e4270 ./contracts/SkaleToken.sol

a6c52a9b24669db1ca15ac63a650c573020bfaa78e67dc63dd9a37e2c0f45188 ./contracts/SkaleManager.sol

2abb171a3bdf413e1a6bd8bfbc920251c162a9240a665bc4eec4415ac27e6f01
./contracts/interfaces/delegation/IDelegatableToken.sol

daf515794090cf18eda69ff4c2f42ae17c28cf9d64e89343e196683167aa57ab ./contracts/interfaces/delegation/ILocker.sol

df46ac05894d217c532804c2a37ae95e2bfab384ff97a0a86e5fdf05da49d9c3
./contracts/thirdparty/BokkyPooBahsDateTimeLibrary.sol

4985fcdd612c04439424e00942b627d604779640fa4216279779547e9624e01a ./contracts/thirdparty/openzeppelin/ERC777.sol

0ab43141c1be6c6764ed9c15c9b87a803250ff4ad57b56bd0be002b9358260d8 ./contracts/delegation/Punisher.sol

c13f4a58aac93d20b667f62b880627f4681ea5aaa2ec1a86c8f93cee55f342b5
./contracts/delegation/DelegationPeriodManager.sol

921d6266a1bfbe97259e34c90d854841ee87d6dce183edc9bb1fd577c9089370 ./contracts/delegation/TimeHelpers.sol

eab81a275aa9464e4e81d10e99817e867f586c3c81000d8b2472a8497e3527db ./contracts/delegation/TokenLaunchLocker.sol

7a63cff448c2d7b2f4862548444ba6bf8bb137fb22aec68487104dd483ae87a5 ./contracts/delegation/PartialDifferences.sol

1fdeaae183e4c3685cea9b860a5fc1720d7e8a309c9108f70e3e0286ce2f37b0 ./contracts/delegation/TokenState.sol

b8968762050d788c908042a217a4942dcc3a49de961b5f046a26e05acdfe6885 ./contracts/delegation/Distributor.sol

e0ee452239ff287f3719eae71c464422f0963696467b656f1fda3f512ab2c5ed ./contracts/delegation/DelegationController.sol

1459d07fee70ad118790f5797690ea7826170bc2be2d6594b22d8ab0fad288cc ./contracts/delegation/TokenLaunchManager.sol

b2242ae9b1ff600ec27ffe19d4a9ca2f97a72d13573f00ac8e494b3b018203c2 ./contracts/delegation/ValidatorService.sol

9ccbd82dab4f785b8ab3be31daad3bffa7b2a9043a3a78d18c5a65cdc756d115 ./contracts/utils/MathUtils.sol

c5eb14b8c58067d273ca65714ab37dd7245e8dbbcc78f698f741dc265d0b8ecf ./contracts/utils/StringUtils.sol

Tests

7445aec498345cbcfd2f7e23d544d6162dcd55c83f67094b84198d1c07a63d39 ./test/ECDH.ts

1c6e373bbf0df3ea96edbebb4f37d71668c752055127d5f806be391d1991dbba ./test/SkaleToken.ts

8fe27026eaa30c437fac34bf3fa16e6d148b7c3468af5c91d88ccf0e108ca0b2 ./test/Schains.ts

269ce78a5ede9b3f142b1bf2c6ea4c9e930ad46e0bc5874e96f94b30ce836c67 ./test/Monitors.ts

774772f446f0a778e652799612a5d25864f39cebc956d0010ad3006146dba14d ./test/SkaleDKG.ts

85de8a2a0f8c62ea54b599d11a72e88fe4e1911fd116f0523e861b59cef06fd2 ./test/Pricing.ts

38758b00b5a8f7218103e12f5b680d10392722110e2272c6443b71b386348c56 ./test/SkaleVerifier.ts

0a019c657a6e51b17f143906802139a99d99c4649a38dcdda9632023f2aaf822 ./test/ContractManager.ts

357e8e0d92cd9de52c3a2894688e95d3978136977a6e525d733117bd5ae922c4 ./test/ConstantsHolder.ts

31ccd2f2d91adeeb739b7ebb3c4ae81b785f1c1f0c0c4f31e108f9d94435b1a3 ./test/NodesFunctionality.ts

f4c07816c16a02470b487bd3e0f9deca7cc766ea8b539bd9dd1b10c7a274cca4 ./test/Decryption.ts

8dc44b1e7fa1796ee22036e1d5d82560714d7f24727a0f352db5f4a864b1d434 ./test/SkaleManager.ts

68fc99377576c7aea33cef124a60dfdc0e0cbe68280c60a69e9b07e753d31992 ./test/SchainsInternal.ts

a2151cd98c0ca5c72ef12eda9331ccd28d7ee802d5e34dc22ef3d75b8d590cf2 ./test/NodesData.ts

0f90907534d86572f02d497f94c2d5d5b24d2d94b8c3df127d3445c89ea91fd4 ./test/delegation/Delegation.ts

0382677cdd6689a25c897f1449ba7cd7bfc8f546584275a9972053ba89ccd917 ./test/delegation/TokenState.ts

172239c144c2ad8c1656de650f74f9b678b70e5e7ec6341fc22e4486dd8e9a5c ./test/delegation/TokenLaunch.ts

ee262687c8073fdc4489e6706413566731e3be1948f000f3b2f3c3add7308c5c ./test/delegation/PartialDifferences.ts

337c1b7ec194402da5204b1fc12ed84493079410a7acf160a03254f3c771998c ./test/delegation/DelegationController.ts

a0392eb0a3b5c33d7a3c55f8dbeafbe7c0867542a4ed82d9eac19cc8816d28c7 ./test/delegation/ValidatorService.ts

a3aaaacce8e943257a9861d9bc8400a6531ced268203a820385116a7e0d247b2 ./test/utils/MathUtils.ts

a01b72aafb9900064e91dc53380d8aa8737f4baa72f54136d7d55553cceb9742 ./test/tools/types.ts

90c2bdf776dc095f4dd0c1f33f746bea37c81b3ad81d51571d8dc84d416ecd13 ./test/tools/elliptic-types.ts

166431169af5c5def41b885179f26f0b9a977091c62e2ef4c05547a0bd9ab4f0 ./test/tools/command_line.ts

d41442de652a1c152afbb664069e4dd836c59b974c2f2c0955832fdcc617f308 ./test/tools/time.ts

862b66e303fdcd588b5fcd9153812893d22f9fe1acabf323e0eaaa5cfd778a0d ./test/tools/deploy/ecdh.ts

36f24255c90a436abce5ab1b2a14d2e19dda0402b7292bc5b52089689f56b20c ./test/tools/deploy/skaleToken.ts

7d52ba16d9dfed2314f6d140aa99f9e76a674d35a1960dcaf268f57b4d777aa5 ./test/tools/deploy/schains.ts

d020d06aa6b43356332f078b22b9639d7a224642ac447618ce2f21e00252c15f ./test/tools/deploy/monitors.ts

1aa57879dc8cc4150e55f84c884c041ca387d82784fe49163e4ba00ac0c4c917 ./test/tools/deploy/nodes.ts

2eef616fd6dd94f7e71bbbfa49a280db9453d953867f7cd2d9ccbe5150e6ac42 ./test/tools/deploy/skaleDKG.ts

b737e22a2a4958a1d8d6c0348bccc77b373ba71b4c74aa7798bb433014c120ce ./test/tools/deploy/pricing.ts

63e4802674e494a990b3ed5fe2dfcd32a5333320126f9ecc2856ac278b2dbb5c ./test/tools/deploy/slashingTable.ts

a911fb09c3f47d109a5a668df47a8b7a6e99788966ab82dd1565bbf9515a59b5 ./test/tools/deploy/skaleVerifier.ts

d98550c2db28471ff0a861987f5a3b0616b19ae08cd4256ab88c28194ebd947d ./test/tools/deploy/contractManager.ts

de7143ec7676eb978f26e9c8bb55ac861a43d4b4089ab7701d71e42335943881 ./test/tools/deploy/factory.ts

928b1bd747e8cb8715d6547f445e186949c0a70bf9257711e1e7d0cd62126385 ./test/tools/deploy/constantsHolder.ts

af7bcb8cfef5f110a1ee4c6a14451f9caaf0d00308a9fd5cd30bcf7759bb7720 ./test/tools/deploy/skaleManager.ts

6441be737f66551ec611210b7eff5128f8ced40cc4e6ac2e8bc865f866889480 ./test/tools/deploy/schainsInternal.ts

182d8295b09d1184f8bae29aef2a86e7b98c164d506997ed789625867534c799 ./test/tools/deploy/dectyption.ts

c1e81470f0ae2a1a2ca82c145b5050d95be248ca7e5d8a7b0f40f08cc568df34 ./test/tools/deploy/delegation/punisher.ts

4224ab4d3e35bf3de906f9ac07ec553d719cc0810a01dcb750b18d8f59e8d2bb ./test/tools/deploy/delegation/tokenState.ts

40cebd0731796b38c584a881d4cef78532ca4a7bab456d79194de54cd6aae740
./test/tools/deploy/delegation/tokenLaunchLocker.ts

29f342e6ec0b662fe021acf4e57691dfeec1a78c8624134287b9ef70cbba9de9
./test/tools/deploy/delegation/tokenLaunchManager.ts

3b3657a436f5437bba6c9ff07e9a90507aceb7456466b851d33b4aa84c3377d3
./test/tools/deploy/delegation/delegationController.ts

14663bff4b527d8b08c81ea577dceff2a70ea173816590a9d3b72bd8b5bf9b9e ./test/tools/deploy/delegation/distributor.ts

447f41a342e6645a08a6b96bd4e88abfc5009973af2526f8d410bfc7b7fa7046
./test/tools/deploy/delegation/delegationPeriodManager.ts

ff7d5f2a19c6766e728f1fcbc037c412f532649be1f448487c51e5f2ffa38c1b ./test/tools/deploy/delegation/timeHelpers.ts

9a19073e52af0e230516006d0f1eecafe320defa4808d9f3484b11db0e584c36
./test/tools/deploy/delegation/validatorService.ts

8bee5eef07f2e98c9fb49880d682b7e350cd0ace0d1e1c56a56d220361616355
./test/tools/deploy/test/partialDifferencesTester.ts

169c8f3df4758ae9780cff15eef9ada9549d1a082aff0302a25dc467e1616e4a
./test/tools/deploy/test/timeHelpersWithDebug.ts

65a100c7361f1fbb6c537c68aa9319519b39acf58e870bca6148725747638644 ./test/tools/deploy/test/reentracyTester.ts

Changelog

2020-02-12 - Initial report•

2020-02-20 - Severity level of QSP-2 lowered after discussing with the Skale team.•

2020-06-19 - Diff audited ()• 50c8f4e..remediation-3

2020-06-25 - Diff audited (multiple commits)•

2020-07-10 - Severity level of QSP-17 lowered•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a

mission to help boost the adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal

verification, static analysis, and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects

worldwide to perform cost-effective smart contract security scans.

To date, Quantstamp has protected $1B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove

security assessment services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community

initiatives such as the Ethereum Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of

Technology) reflect our commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise

by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the

internet or other means, and assumes no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement

with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such

hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that

Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or

entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that

Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the extent to

which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the use of third-

party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated

by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor

inclusive of all vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or

use, including but not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain

technology remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas

beyond the programming language, or other programming aspects that could present security risks. A report does not indicate the endorsement of any

particular project or team, nor guarantee its security. No third party should rely on the reports in any way, including for the purpose of making any

decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in

connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties

of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or

information linked to, called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked

websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring

any transaction between you and any third-party providers of products or services. As with the purchase or use of a product or service through any

medium or in any environment, you should use your best judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT,

ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED

UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Skale Network Audit

