
October 29th 2020 — Quantstamp Verified

SKALE Allocator

This security assessment was prepared by Quantstamp, the leader in blockchain

security

Executive Summary

Type Token Vesting Contracts

Auditors Ed Zulkoski, Senior Security
Engineer
Kevin Feng, Software Engineer
Kacper Bąk, Senior Research
Engineer

Timeline 2020-08-05 through 2020-08-12

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing,
Functional Testing, Computer-
Aided Verification, Manual Review

Specification SKALE SAFT Core

Documentation
Quality

High

Test Quality Undetermined

Source Code
Repository Commit

skale-saft-core b427bb2

Goals Do the smart contracts
implement the provided
specification?

•

Can funds be locked or
stolen?

•

Do vesting schedules unlock
funds at the appropriate time?

•

Total Issues 9 (7 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 2 (2 Resolved)

Low Risk Issues 3 (3 Resolved)

Informational Risk Issues 3 (1 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large
number of users’
sensitive information at
risk, or is reasonably
likely to lead to
catastrophic impact for
client’s reputation or
serious financial
implications for client
and users.

Medium Risk The issue puts a subset
of users’ sensitive
information at risk,
would be detrimental for
the client’s reputation if
exploited, or is
reasonably likely to lead
to moderate financial
impact.

Low Risk The risk is relatively small
and could not be
exploited on a recurring
basis, or is a risk that the
client has indicated is
low-impact in view of the
client’s business
circumstances.

Informational The issue does not post
an immediate risk, but is
relevant to security best
practices or Defence in
Depth.

Undetermined The impact of the issue is
uncertain.

Unresolved Acknowledged the
existence of the risk, and
decided to accept it
without engaging in
special efforts to control
it.

Acknowledged The issue remains in the
code but is a result of an
intentional business or
design decision. As such,
it is supposed to be
addressed outside the
programmatic means,
such as: 1) comments,
documentation,
README, FAQ; 2)
business processes; 3)
analyses showing that
the issue shall have no
negative consequences
in practice (e.g., gas
analysis, deployment
settings).

https://hackmd.io/@chadwick/S1U2egA1v
https://github.com/skalenetwork/skale-saft-core
https://github.com/skalenetwork/skale-saft-core/commit/b427bb2eab1b137cff2f7d216248079a40d3e7b2

Resolved Adjusted program
implementation,
requirements or
constraints to eliminate
the risk.

Mitigated Implemented actions to
minimize the impact or
likelihood of the risk.

Summary of Findings

Quantstamp has reviewed the SAFT, Core, and associated smart contracts. The code is generally well-documented

and specified. During the audit, several issues were found, including several functions that were incomplete

(containing TODO statements), some functions that may not behave correctly for corner-cases, and issues related to

function parameter checks. We recommend addressing all issues before deployment. Further, although test coverage

was quite high, we recommend additional testing to ensure edge-cases are handled properly, particularly for

complicated functions such as .getTimeOfNextUnlock()
All fixes from the Skale team have been reviewed and marked resolved based on commit .Update: 6c64026

ID Description Severity Status

QSP-

1

Unresolved TODOs Medium Fixed

QSP-

2

Incorrect Unlock Times in getTimeOfNextUnlock() Medium Fixed

QSP-

3

Stub

function
getAndUpdateForbiddenForDelegationAmount()

Low Fixed

QSP-

4

Unclear semantics of addSAFTRound() Low Fixed

QSP-

5

Missing check in andwithdrawBounty()
requestUndelegation()

Low Fixed

QSP-

6

Misusing / /require() assert() revert() Informational Acknowledged

QSP-

7

Privileged Roles and Ownership Informational Acknowledged

QSP-

8

Unchecked address parameters Informational Fixed

QSP-

9

Unclear functionalitydelegate() Undetermined Fixed

https://github.com/skalenetwork/skale-allocator/commit/6c64026b01025fdc0f8d5f7bc2e80ea3b741d492

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to

specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the

size, scope, and functionality of the smart contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential
vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications,
sources, and instructions provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code

and how much code is exercised when we run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to
execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify,
maintainability, security, and control based on the established industry and academic practices, recommendations,
and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.12• Slither

v0.22.8• Mythril

https://github.com/crytic/slither
https://github.com/ConsenSys/mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: sslither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

Findings

QSP-1 Unresolved TODOs

Severity: Medium Risk

FixedStatus:

, ,File(s) affected: Core.sol CoreEscrow.sol SAFT.sol

There are several TODO statements that still exist in the code:Description:

1. In SAFT.sol#199 - // TOOD: Fix index error

2. In Core.sol#192 - . Related, the function does not change the to
.

// TODO add deactivate logic HolderStatus
TERMINATED

3. In Core.sol#219 - // TODO: Remove to allow both past and future vesting start date

4. In Core.sol#372 - TODO: remove, controlled by Core Escrow

5. In CoreEscrow.sol#240 - TODO: missing moving Core holder to deactivated state?

6. In several locations - replace with ProxyFactory when @openzeppelin/upgrades will be compatible
with solidity 0.6

Ensure that the intended functionality is added for each TODO.Recommendation:

this has been resolved with the exception of bullet 6, which is pending updates to OpenZeppelin.Update:

QSP-2 Incorrect Unlock Times in getTimeOfNextUnlock()

Severity: Medium Risk

FixedStatus:

,File(s) affected: Core.sol SAFT.sol

Consider a SAFT that lasts 2 years, vests every 1 year, and has no lockup period. Consider a

with a , and this function is invoked on "Jan 1, year 1".

Description: SAFTHolder
startVestingTime = "Dec. 30, year 0"

The local variables in will be assigned as follows:getTimeOfNextUnlock()

• dateTime = year 1

• lockupTime = year 0

• finishTime = year 2

• numberOfDonePayments = 1

• numberOfAllPayments = 2

Since , the check on L325 will succeed, and the function

will incorrectly report Dec. 30, year 2 as the next unlock time, instead of Dec 30, year 1.

numberOfAllPayments <= numberOfDonePayments + 1

As an alternative scenario, if instead of a 2 year SAFT, it is 3 years, then L325 will fail, and we correctly have the following:

• nextPayment = 1

returns "Dec. 30, year 1"•

Note that the same functionality exists in .Core._getNumberOfCompletedUnlocks()

Revise the functionality of these two functions. Add new test cases corresponding to edge-cases, such

as dates near the end or start of a year.

Recommendation:

QSP-3 Stub functiongetAndUpdateForbiddenForDelegationAmount()

Severity: Low Risk

FixedStatus:

File(s) affected: SAFT.sol

The function is a stub. It also contains the comment

which is unclear.

Description: getAndUpdateForbiddenForDelegationAmount()
network_launch_timestamp

Implement the function if necessary, and clarify the meaning of the comment.Recommendation:

QSP-4 Unclear semantics of addSAFTRound()

Severity: Low Risk

FixedStatus:

,File(s) affected: Core.sol SAFT.sol

It is not clear why is not considered when sanitizing the function arguments, since the first

two parameters are in months, but the parameter could be days, months, or years. For example, if

which corresponds to years, then an input of ,

, would pass the checks.

Description: vestingPeriod
vestingTimes

vestingPeriod == 3 lockupPeriod == 1 (month) fullPeriod
== 2 (month) vestingTimes == 1 (year)
The same issue exists in .Core.addCore()

Revise the require-statements ensuring the is taken into consideration.Recommendation: vestingPeriod

QSP-5 Missing check in andwithdrawBounty() requestUndelegation()

Severity: Low Risk

FixedStatus:

File(s) affected: CoreEscrow.sol

In the comment block, it states "Only Owner can withdraw bounty to Core contract after Core holder is

deactivated.". However, there is no check that the holder is deactivated if the caller is the contract owner.

Description:

A similar issue exists for , which states "Only Owner can request undelegation after Core

holder is deactivated (upon holder termination)."

requestUndelegation()

Add a require-statement ensuring that the account is deactivated if the owner is the caller in each

function.

Recommendation:

QSP-6 Misusing / /require() assert() revert()

Severity: Informational

AcknowledgedStatus:

File(s) affected: BokkyPooBahsDateTimeLibrary.sol

, , and all have their own specific uses and should not be switched around.Description: require() revert() assert()

checks that certain preconditions are true before a function is run.• require()

, when hit, will undo all computation within the function.• revert()

is meant for checking that certain invariants are true. An failure implies something that
should never happen, such as integer overflow, has occurred.

• assert() assert()

In , use instead of on lines , , ,

, , , , , , , , and

Recommendation: BokkyPooBahsDateTimeLibrary.sol assert require 217 232 236
240 244 248 262 277 281 285 289 293

QSP-7 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

,File(s) affected: Core.sol SAFT.sol

Smart contracts will often have variables to designate the person with special privileges to make

modifications to the smart contract.

Description: owner

In the Core and SAFT contracts, the owner is required to start all vesting plans, and may terminate a vesting holder at any

point.

Although this centralization seems natural for this type of vesting contract, users (holders) should be

made aware of the roles of the owner in each contract through documentation.

Recommendation:

QSP-8 Unchecked address parameters

Severity: Informational

FixedStatus:

File(s) affected: CoreEscrow.sol

In , the address parameters are not checked to be non-zero. This may lead to incorrect

initialization if the default values are unintentionally passed during deployment.

Description: initialize()

Add require-statements ensuring that each address argument is non-zero in .Recommendation: initialize()

QSP-9 Unclear functionalitydelegate()

Severity: Undetermined

FixedStatus:

File(s) affected: CoreEscrow.sol

In , if the holder has already delegated their full vested amount to a validator, but then invokes

the function again with a different , what is the result? Will

fail?

Description: delegate()
validatorId

delegationController.delegate(validatorId, amount, delegationPeriod, info);

Clarify this functionality with added documentation.Recommendation:

Update from Skale team: delegate() logic is handled and checked in smart contracts

(), call is a proxy layer for beneficiaries, though not covered with error

handling additionally.

skale-manager
delegationController.sol ESCROW.sol

Automated Analyses

Slither

Slither reported no issues.

Mythril

In , Mythril warns that an assertion (i.e., array bounds check) may fail on the following

line: . Ideally, the function

should first check that the exists before this array access, however since this is an external view function,

there is no gas-cost implications to this assert.

SAFT.getTimeOfNextUnlock()
SAFTRound memory saftParams = _saftRounds[saftHolder.saftRoundId - 1];

saftHolder

A similar issue was found in and .Core.getVestingCliffInMonth() Core.calculateVestedAmount()

From the Skale team: the indexes in the functions above are taken from the contract's memory (not

externally) thereby are correct and not checked additionally.

Update: resolved.

Adherence to Specification

The code is well specified. Some discrepancies between the specification and the code were already noted in the findings

above.

Code Documentation

The code is generally well documented. Some minor issues:

1. "An core" should be changed to "a core" throughout.

2. In the function the comment block has the requirement "Core must
be active". The core should be active. Further, the corresponding require-statement in the function should state
""Core holder is still active".

CoreEscrow.retrieveAfterTermination()
not

all issues have been resolved.Update:

Adherence to Best Practices

1. Favor using instead of in order to make the size of integer variables explicit.uint256 uint

2. There is commented out code that should be removed:
1. SAFT.sol#79 -- // SAFTRound[] private _otherPlans;

2. SAFT.sol#84-85 -- related to _holderToEscrow

3. SAFT.sol#213-217 in connectHolderToSAFT()

4. SAFT.sol#364 in initialize()

5. SAFT.sol#404-406 in _getNumberOfCompletedUnlocks()

6. CoreEscrow.sol#108 in retrieve()

7. Core.sol#85 -- // mapping (address => uint) private _vestedAmount;

8. Core.sol#218-219 in connectHolderToPlan()

9. Core.sol#383-388 the function getLockedAmountForDelegation()

3. Some functions such as , , and
are cloned across multiple contracts, and could be abstracted into a library.
_addMonthsAndTimePoint() _getTimePointInCorrectPeriod()

_getPartPayment()

4. In , could be given an enum type. Similarly for .SAFT.addSAFTRound vestingPeriod Core.addCore()

5. The function does not actually update anything. Consider renaming.SAFT.getAndUpdateLockedAmount()

6. The function does not actually update anything.
Consider renaming.

SAFT.getAndUpdateForbiddenForDelegationAmount()

7. In , the variable is declared twice.SAFT.getTimeOfNextUnlock() lockupDate

8. In , the expression
is computed

twice (L310, L316).

SAFT.getTimeOfNextUnlock()
timeHelpers.addMonths(saftHolder.startVestingTime, saftParams.lockupPeriod)

9. In on L118-119: the check in L118 is unnecessary since
.

Core.approveHolder() UNKNOWN !=
CONFIRMATION_PENDING

all issues have been resolved.Update:

Test Results

Test Suite Results

Contract: Allocator
✓ should register beneficiary (786ms)
✓ should get beneficiary data (978ms)
✓ should not start vesting without registering beneficiary (188ms)
✓ should start vesting with registered & approved beneficiary (940ms)
✓ should stop cancelable vesting after start (2903ms)
✓ should not stop uncancelable vesting after start (2645ms)
✓ should not register Plan if sender is not a vesting manager (121ms)
✓ should not connect beneficiary to Plan if sender is not a vesting manager (210ms)
✓ should not register already registered beneficiary (930ms)
✓ should not register Plan if cliff is too big (115ms)

✓ should not register Plan if vesting interval is incorrect (116ms)
✓ should not connect beneficiary to Plan if amounts incorrect (186ms)
✓ should be possible to delegate tokens in escrow if allowed (1556ms)
✓ should allow to retrieve all tokens if beneficiary is registered along time ago

(1430ms)
✓ should operate with fractional payments (1753ms)
✓ should correctly operate Plan 4: one time payment (1939ms)
✓ should correctly operate Plan 5: each month payment (4177ms)
✓ should correctly operate Plan 5: each 1 day payment (6449ms)
✓ should correctly operate Plan 5: each 1 year payment (3876ms)
✓ should correctly operate Plan 6: each day payment for 3 month (45261ms)
✓ should correctly operate Plan 7: twice payment (1625ms)
✓ should not add plan with zero vesting duration (180ms)
when beneficiary delegate escrow tokens

✓ should be able to cancel pending delegation request (349ms)
✓ should be able to undelegate escrow tokens (382ms)
✓ should allow to withdraw bounties (960ms)

when Plans are registered at the past
✓ should unlock tokens after lockup (177ms)
✓ should be able to transfer token (1039ms)
✓ should not be able to transfer more than unlocked (1126ms)
✓ should unlock tokens first part after lockup (200ms)

when all beneficiaries are registered
✓ should show balance of all escrows (212ms)
✓ All tokens should be locked of all beneficiaries (367ms)
✓ After 6 month (455ms)
✓ After 9 month (549ms)
✓ After 12 month (725ms)
✓ should be possible to send tokens (3943ms)
✓ After 15 month (545ms)
✓ After 16, 17, 18 month (1428ms)
✓ After 24, 30, 36 month (1114ms)

should calculate next vest time correctly
✓ from Dec 30, year based vesting (563ms)
✓ from Dec 30, month based vesting (617ms)
✓ from Dec 30, day based vesting (717ms)

41 passing (5m)

Code Coverage

The code is well-covered by the test suite.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 97.08 69.64 100 97.06

Allocator.sol 96.58 79.17 100 96.4 371,440,461,487

Escrow.sol 97.78 53.13 100 97.92 69

Permissions.sol 100 50 100 100

contracts/interfaces/ 100 100 100 100

IContractManager.sol 100 100 100 100

ITimeHelpers.sol 100 100 100 100

contracts/interfaces/delegat
ion/

100 100 100 100

IDelegationController.sol 100 100 100 100

IDistributor.sol 100 100 100 100

ITokenState.sol 100 100 100 100

contracts/interfaces/openzep
pelin/

100 100 100 100

IProxyAdmin.sol 100 100 100 100

IProxyFactory.sol 100 100 100 100

All files 97.08 69.64 100 97.06

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified,
intentionally or otherwise, after the security review. You are cautioned that a different SHA-256 hash could be (but is not
necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

4d0ae9cfe821957af39ca515b6ff4c0c3898f61370b51fb2b41500433bcc0bc7
./contracts/Allocator.sol

2fcc8e6a54365d2519dac0fd7ae984f68f75f8ff5634ebf83b647c99560efd2a
./contracts/Permissions.sol

b5332bbf2bff34f1dac359f825799dce5ce531d9417250a17c105b7862cd2192 ./contracts/Escrow.sol

03ffbd8b46d52e1df026870a9b9c9e73c7498268a509abf55f3c9a0260eb8517
./contracts/interfaces/IContractManager.sol

f9619b00864d00de49e55e790be5982fb5b8129b46b89ccba905e382fc51fe8a
./contracts/interfaces/ITimeHelpers.sol

c664c817f9821fc45f891f0af03ea082bfd6d3fa0d9d4fcf69e038aec8e85b2d
./contracts/interfaces/openzeppelin/IProxyFactory.sol

618b203ab75e363e55497680eeb4969ea8e4e9c7fa8e79b0b0b71d14007ddd49
./contracts/interfaces/openzeppelin/IProxyAdmin.sol

a3bfc5a38b3caf625e25d6654cc5dafc67830e0dd11823d001f41afc380448c0
./contracts/interfaces/delegation/ITokenState.sol

37bf9c07812b1adfba8c4811ef6b1613a3b4c94b3ea53787ad51c9273a2785dd
./contracts/interfaces/delegation/IDistributor.sol

0652c9818cdb040026bad6011b586d9780b4f3675d84c54c2933d5c793f56182
./contracts/interfaces/delegation/IDelegationController.sol

b5faaaac59256e0facd0ded27cbe1920d91e6ca552bf8a4f5eb07179f07d407f
./contracts/test/LockerMock.sol

b051726dfdf768c0f6f298126ecedebaa50bdfd5daac4e5859f27604797c13b2
./contracts/test/ContractManager.sol

28197c20c7e62aadab363afa20999e46aec4500031e2f3e123efbe1e5b3e436a
./contracts/test/ConstantsHolderMock.sol

d5821e0e489b04360e1230e7d8319d5cea01fa71025528eb1a2bc2bf5bb1f466
./contracts/test/ProxyFactoryMock.sol

a8f56126ad4ad8c67e063a641b5717a451e63d5990cf4ecb88d85b1e0f7d8ac2
./contracts/test/TokenStateTester.sol

9d75e4fd92df7af8f922848cc513ac2483ad06e5e0c70c42c276e0d4b10270e0
./contracts/test/SkaleTokenTester.sol

c1d797b8788804140f58b57c73676fabf466657ae5f64fe69bfa2889ab0f4917
./contracts/test/DistributorMock.sol

b7b68bc65367ce19b9da7a6212e92d9d9deaf29449863c4a89db6613955ba493
./contracts/test/TimeHelpersTester.sol

11b0131aadafc32afc4c113652525e8f128527c1bbc73fbd25b96cd27fd2cd3d
./contracts/test/TokenLaunchManagerTester.sol

a2106e94e189039dcf341e9bb98c69e77ae8b61f073ad214401592e0b87d7c08
./contracts/test/DelegationControllerTester.sol

1bfe6a9fa226689d24996f522dfffb250539a78d188de278f85d4ac1e063e4c7
./contracts/test/interfaces/ILocker.sol

51b24273656b8053643df601c6d1c4dd1ecbe0f5a2235550f390838904b4b682
./contracts/test/thirdparty/Migrations.sol

251cf29182e47b7fdc593e6b0a2923587f921d319d859e3fb1eb91159b7efa2f
./contracts/test/thirdparty/BokkyPooBahsDateTimeLibrary.sol

13a0f044718497ef82e2339f3e739dffb50e858c9974fb4326bc23ae17505a48
./contracts/test/utils/StringUtils.sol

Tests

6a8e4d898d2ef3f0f879788f7f2fc369ca76ae0b08764815d14b9a893f04f242 ./test/Allocator.ts

6e7867b7198b66578a6dc32c8fe21e02bc069150ef272182ba6d23c618f7a280 ./test/tools/types.ts

e58228b8f7b3eca303823d7c2d33156b3f12a413676022f66c1c3474e799c828
./test/tools/vestingCalculation.ts

90c2bdf776dc095f4dd0c1f33f746bea37c81b3ad81d51571d8dc84d416ecd13 ./test/tools/elliptic-
types.ts

361f1be518e213e9106378a90463ad8bb673f81ed1d2505602d12a3485a9ba52
./test/tools/command_line.ts

dbe983ad378eb15da090040af997b3ebb5cf2a1bd01b819a900f33886eb739b3 ./test/tools/time.ts

990ba91e6946ce16a6e087707238a0b50a6fbe9596e9f786ad2ee14cc3ef4519
./test/tools/deploy/allocator.ts

035dc4d0efdde1948276f69ac00960dc4b3e2f1f32fef7792e11d797646b5e62
./test/tools/deploy/escrow.ts

703d2e51da3fe0426847cc1d8ced2c707b50c5d6e9b67e0d43b8ef102458012e
./test/tools/deploy/contractManager.ts

de7143ec7676eb978f26e9c8bb55ac861a43d4b4089ab7701d71e42335943881
./test/tools/deploy/factory.ts

3d92b6c89781dfd476d1971283951bdb5f6941aa5148865ad87e535e4c26da8d
./test/tools/deploy/test/tokenStateTester.ts

ef46653cbd3ea549621e67528508f49bae491c42f31dcef7b52e7f4b1ba3a829
./test/tools/deploy/test/tokenLaunchManagerTester.ts

269bc5b375f09b181e5a3b4c7ef8359c397146381bc230af1e8d97f9225197f3
./test/tools/deploy/test/proxyFactoryMock.ts

e2f571b76e72739b2052eccdff5705f8a06d213f78318e055c028c8f42753be2
./test/tools/deploy/test/skaleTokenTester.ts

9d227e2ce4b26348f4ec02b265d283102fe0a13ad75f5746b0accd8d115a531d
./test/tools/deploy/test/timeHelpersTester.ts

32bb05d05ff5171a33bba4827171d22c2cf70fa2daa65e66d7e0869b6806dbf4
./test/tools/deploy/test/delegationControllerTester.ts

492f16224e404a5bfc2610b34041449b257e06f9f6f9680de5acc5a67351f14d
./test/tools/deploy/test/constantsHolderMock.ts

Changelog

2020-08-12 - Initial report•

2020-09-10 - Revised report based on commit• 6c64026

https://github.com/skalenetwork/skale-allocator/commit/6c64026b01025fdc0f8d5f7bc2e80ea3b741d492

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-

aided reasoning tools, with a mission to help boost the adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined

experience in formal verification, static analysis, and software verification. Quantstamp has also developed a protocol to

help smart contract developers and projects worldwide to perform cost-effective smart contract security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects

globally through its white glove security assessment services. As an evangelist of the blockchain ecosystem, Quantstamp

assists core infrastructure projects and leading community initiatives such as the Ethereum Community Fund to expedite

the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT

(Massachusetts Institute of Technology) reflect our commitment to research, development, and enabling world-class

blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without

notice, unless indicated otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy,

timeliness, or completeness of any report you access using the internet or other means, and assumes no obligation to

update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback

provisions in your agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed

except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than

Quantstamp, Inc. (Quantstamp). Such hyperlinks are provided for your reference and convenience only, and are the

exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the content or

operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of

third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or

mean that Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely

responsible for determining the extent to which you may use any content at any other web sites to which you link from the

report. Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability

whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided.

Results may not be complete nor inclusive of all vulnerabilities. The review and this report are provided on an as-is, where-

is, and as-available basis. You agree that your access and/or use, including but not limited to any associated services,

products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under

development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other

areas beyond the programming language, or other programming aspects that could present security risks. A report does

not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on

the reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other

asset. To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this

report, its content, and the related services and products and your use thereof, including, without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse,

guarantee, or assume responsibility for any product or service advertised or offered by a third party through the product,

any open source or third-party software, code, libraries, materials, or information linked to, called by, referenced by or

accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites

or mobile applications appearing on any advertising, and we will not be a party to or in any way be responsible for

monitoring any transaction between you and any third-party providers of products or services. As with the purchase or

use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,

INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

SKALE Allocator Audit

