
June 2nd 2022 — Quantstamp Verified

Pine

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Lending Pools

Auditors Souhail Mssassi, Research Engineer

Rabib Islam, Research Engineer

Roman Rohleder, Research Engineer

Timeline 2022-04-06 through 2022-04-29

EVM Arrow Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification Pine Documentation

Documentation Quality Low

Test Quality Undetermined

Source Code
Repository Commit

lending-borrowing-smart-contracts fea59e1

lending-borrowing-smart-contracts f7c110c

lending-borrowing-smart-contracts 9b7f7cf

Total Issues 13 (10 Resolved)

High Risk Issues 5 (4 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 5 (3 Resolved)

Informational Risk Issues 1 (1 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://docs.pine.loans/
https://github.com/pinedefi/lending-borrowing-smart-contracts/
https://github.com/pinedefi/lending-borrowing-smart-contracts/tree/fea59e18a4a712c844e52cecdc97b875c61563ed
https://github.com/pinedefi/lending-borrowing-smart-contracts/
https://github.com/pinedefi/lending-borrowing-smart-contracts/tree/f7c110c
https://github.com/pinedefi/lending-borrowing-smart-contracts/
https://github.com/pinedefi/lending-borrowing-smart-contracts/tree/9b7f7cf


Summary of Findings

:

Through reviewing the code, we found of various levels of severity: high-severity, medium-severity, low-severity, informational-severity and undetermined

issues. We recommend addressing all the issues before deploying the code.

:

The pine team has fixed the majority of the issues and the contracts are ready to be deployed.

Initial audit

13 potential issues 5 1 5 1 1

After the re-audit

ID Description Severity Status

QSP-1 Replay Attack On Signature In FunctionBorrow High Fixed

QSP-2 Front Run on Signature in The FunctionBorrow High Fixed

QSP-3 Fees Can Be Bypassed High Fixed

QSP-4 Signature Malleability High Fixed

QSP-5 Pool Owner Can Steal NFTs High Acknowledged

QSP-6 Usage Of Instead Oftransfer safeTransfer Medium Mitigated

QSP-7 Missing Value Verification Low Acknowledged

QSP-8 Missing Value Verification Can Lead To A Denial Of Service Low Fixed

QSP-9 Missing Address Verification Low Fixed

QSP-10 Dead Code Low Fixed

QSP-11 Privileged roles and ownership Low Acknowledged

QSP-12 Events not emitted on state change Informational Mitigated

QSP-13 Missing the pausable modifier in the functionflashLoan Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:



v0.8.2• Slither

Steps taken to run the tools:

1. Install the Slither tool: pip3 install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Replay Attack On Signature In FunctionBorrow

Severity: High Risk

FixedStatus:

File(s) affected: contracts/ERC721LendingPool02.sol

In the function, we are providing the parameter , which is verified in function . The issue here is that nothing prevents from

double submitting the signature, and thus making a replay attack possible.

Description: borrow signature VerifySignaturePool02.verify

Consider associating for each signature a nonce that it will be incremented, to prevent the replay attack.Recommendation:

Fixed by taking the calling address and a new incrementing nonce into account for the signature. Fixed in commits 427d171, 5e82702 and 1460097.Update:

QSP-2 Front Run on Signature in The FunctionBorrow

Severity: High Risk

FixedStatus:

File(s) affected: contracts/ERC721LendingPool02.sol

In the function, we are inserting the parameter which is verified in the , the issue here is that nothing prevent from

viewing the signature in the mempools and re-use them.

Description: borrow signature VerifySignaturePool02.verify

In the signature consider adding also the address of the caller; this way even if someone has extracted the signature, it will be unusable.Recommendation:

Fixed by taking the calling address into account for the signature. Fixed in commit cb5e245.Update:

QSP-3 Fees Can Be Bypassed

Severity: High Risk

FixedStatus:

File(s) affected: contracts/ERC721LendingPool02.sol

At every executed in the contract, a percentage is taken from the amount as . In the case where the variable is lower than

10000000000, the fee variable will be equal to 0 due to the type conversion. The same issue exists for the in the function(L229)

Description: flashLoan amountFee _amount*lenderFeeBips
protocolFee borrow

Recommendation:

It is recommended to add a require statement to make sure that is higher than the 10000000000.• _amount*lenderFeeBips

It is recommended to add a require statement to make sure that is higher than the 10000.• x[4] * protocolFeeBips

Fixed by implementing the recommended statements.Update: require()

QSP-4 Signature Malleability

Severity: High Risk

FixedStatus:

File(s) affected: contracts/VerifySignaturePool02.sol

Related Issue(s): SWC-https://swcregistry.io/docs/SWC-117

The given implementation of signature verification in using directly is prone to signature malleability.Description: VerifySignaturePool02.recoverSigner() ecrecover

Consider using a secure wrapper like , which performs additional security checks on the signature parameters.Recommendation: OpenZeppelins ECDSA utility library

Fixed by making use of OpenZeppelin's ECDSA library, as suggested. Fixed in commit 12bb678.Update:

QSP-5 Pool Owner Can Steal NFTs

Severity: High Risk

AcknowledgedStatus:

File(s) affected: contracts/ControlPlane01.sol

Whenever returns false for an NFT (which simply requires ), the owner

of a pool ( ) can call and thereby transfer the NFT to their wallet.

Description: PineLendingLibrary.nftHasLoan(...) loanTerms.returnedWei <= loanTerms.borrowedWei
ERC721LendingPool ControlPlane01.withdrawNFT(...)

If this is intended, the team should document this behavior.Recommendation:

The team has acknowledged the risk, and they updated their documentation https://docs.pine.loans/documentations/core/controlplane01#scenario to document the intended

behaviour.

Update:

https://github.com/crytic/slither
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-https://swcregistry.io/docs/SWC-117
https://docs.openzeppelin.com/contracts/4.x/api/utils#ECDSA-tryRecover-bytes32-bytes-


QSP-6 Usage Of Instead Oftransfer safeTransfer

Severity: Medium Risk

MitigatedStatus:

, , , , ,File(s) affected: ERC721LendingPool02.sol ERC1155LendingPool02.sol Router01.sol PineFinancing01.sol LoanRollover01.sol ControlPlane01.sol

The ERC20 standard token implementation functions return the transaction status as a Boolean. It's good practice to check for the return status of the function call to ensure that

the transaction was successful. It is the developer's responsibility to enclose these function calls with require() to ensure that, when the intended ERC20 function call returns false, the caller

transaction also fails. However, it is mostly missed by developers when they carry out checks. In effect, the transaction would always succeed, even if the token transfer didn't.

Description:

* `contracts/ERC721LendingPool02.sol` (L143);
* `contracts/ERC721LendingPool02.sol` (L262);
* `contracts/ERC721LendingPool02.sol` (L233);
* .`contracts/ERC721LendingPool02.sol` (L238);
* `contracts/ERC721LendingPool02.sol` (L296);
* `contracts/ERC721LendingPool02.sol` (L307);
* `contracts/ERC721LendingPool02.sol` (L356);
* `contracts/ERC721LendingPool02.sol` (L386);
* `contracts/ERC1155LendingPool02.sol` (L144);
* `contracts/ERC1155LendingPool02.sol` (L235);
* `contracts/ERC1155LendingPool02.sol` (L240);
* `contracts/ERC1155LendingPool02.sol` (L301);
* `contracts/ERC1155LendingPool02.sol` (L312);
* `contracts/ERC1155LendingPool02.sol` (L363);
* `contracts/ERC1155LendingPool02.sol` (L393);
* `contracts/Router01.sol` (L54);
* `contracts/Router01.sol` (L56);
* `contracts/PineFinancing01.sol` (L92);
* `contracts/LoanRollover01.sol` (L54);
* `contracts/ControlPlane01.sol` (L54);

Use the function from the SafeERC20 implementation, or put the transfer call inside an assert or require verifying that it returned true.Recommendation: safeTransfer

The following lines remains using the require wrapper.Update:

L144 of ERC1155LendingPool02.sol
L235 of ERC1155LendingPool02.sol
L240 of ERC1155LendingPool02.sol
L301 of ERC1155LendingPool02.sol
L363 of ERC1155LendingPool02.sol

QSP-7 Missing Value Verification

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: contracts/ControlPlane01.sol

Description:

In the function, the contract should verify if is less than 100%.• setFee feeBps

In the function, the value is not verified.• setDurationParam ppm

Recommendation:

Consider verifying to be less than 100%.• feeBps

Consider adding a limit for the variable.• ppm

Partially fixed in commit 341708e, by checking the parameter of ( ) to be within 100%, as suggested. The parameter in function

.

Update: setFee() ControlPlane01.sol
setDurationParam()

QSP-8 Missing Value Verification Can Lead To A Denial Of Service

Severity: Low Risk

FixedStatus:

File(s) affected: contracts/ERC721LendingPool02.sol

In the function located in the contract, the can be changed, the issue here is that if this is updated to the value

0, the function will always revert due to the verification done in the (L101).

Description: setBlockLoanLimit ERC721LendingPool02 blockLoanLimit
borrow updateBlockLoanAmount

It is recommended to make sure the surpasses 0.Recommendation: blockLoanLimit

Fixed in commit 3f265e7, by checking parameter to be greater than zero, as suggested.Update: bll

QSP-9 Missing Address Verification

Severity: Low Risk

FixedStatus:

,File(s) affected: contracts/ERC721LendingPool02.sol contracts/PineFinancing01.sol

Certain functions lack a safety check on the address. The address-type argument should include a zero-address test, otherwise, the contract's functionality may become

inaccessible or tokens may be burned in perpetuity.

Description:

(L70,71,72,73);• contracts/ERC721LendingPool02.sol

(L15);• contracts/PineFinancing01.sol

It is recommended to make sure the addresses provided in the arguments are different from .Recommendation: address(0)



Fixed in commit bd1fb94, by adding corresponding statements, as suggested.Update: require()

contracts/ERC721LendingPool02.sol (L70,71,72,73): Resolved•

contracts/PineFinancing01.sol (L15): Resolved•

QSP-10 Dead Code

Severity: Low Risk

FixedStatus:

, ,File(s) affected: contracts/ControlPlane01.sol contracts/PineFinancing01.sol contracts/Router01.sol

In the contract, we have a code comment of the function of the function . Further occurrences of commented out code are listed below.Description: ControlPlane01 callLoan

(L58-60);• contracts/ControlPlane01.sol

(L32);• contracts/PineFinancing01.sol

(L19-32);• contracts/Router01.sol

If the commented code is not used, consider removing it before going to mainnet.Recommendation:

Fixed in commit 1d6283e, by removing corresponding comments, as suggested.Update:

contracts/ControlPlane01.sol (L58-60): Resolved•

contracts/PineFinancing01.sol (L32): Resolved•

contracts/Router01.sol (L19-32): Resolved•

QSP-11 Privileged roles and ownership

Severity: Low Risk

AcknowledgedStatus:

, , , ,

, ,

File(s) affected: contracts/CloneFactory02.sol contracts/Migrations.sol contracts/ERC721LendingPool02.sol contracts/ERC1155LendingPool02.sol
contracts/Router01.sol contracts/PineFinancing01.sol contracts/PineWallet01.sol

Certain contracts have state variables, e.g. , which provide certain addresses with privileged roles. Such roles may pose a risk to end-users.Description: owner
The contract contains the following privileged roles:CloneFactory02.sol

, as initialized during the constructor:• owner
Renounce his role and thereby disable all following listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Add/Remove arbitrary addresses of the clonable targets list, by calling .toggleWhitelistedTarget()•

The contract contains the following privileged roles:Migrations.sol

, as initialized during deployment:• owner
Set/Unset , by calling .last_completed_migration setCompleted()•

Contracts and contain the following privileged roles:ERC721LendingPool02.sol ERC1155LendingPool02.sol

, as initialized during deployment to :• owner msg.sender

Renounce his role and thereby disable all followingly listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Set an arbitrary high loan limit per block, by calling .setBlockLoanLimit()•

Set arbitrary pool parameters, by calling .setDurationParam()•

Pausing/Unpausing the contract (impacting the callability of and ), by calling / .repay() borrow() pause() unpause()•

Withdraw an arbitrary amount of ETH to itself, by calling .withdraw()•

Withdraw an arbitrary amount of a given ERC20 address to itself, by calling .withdrawERC20()•

The contract contains the following privileged roles:Router01.sol

, as initialized during deployment to :• owner msg.sender

Renounce his role and thereby disable all followingly listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Approve an arbitrary amount to an arbitrary address for a given currency to this and all inheriting contracts, by calling .approvePool()•

The contract contains the following privileged roles:PineFinancing01.sol

, as initialized during deployment to :• owner msg.sender

Renounce his role and thereby disable all followingly listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Approve/Disapprove arbitrary address/function selector pairs ( ) to be called via , by calling .approvedMethods[] buyERC721() setWhitelistedMethods()•

Withdraw an arbitrary amount of ETH from the contract to its address, by calling .withdraw()•

Withdraw an arbitrary amount of any ERC20 from the contract to its address, by calling .withdrawERC20()•

Transfer an arbitrary ERC721 from the contract to its address, by calling .withdrawERC721()•



The contract contains the following privileged roles:ControlPlane01.sol

, as initialized during deployment to :• owner msg.sender

Renounce his role and thereby disable all following listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Add/Remove arbitrary addresses from the whitelisted intermediaries mapping ( ), by calling
.

whitelistedIntermediaries[]

toggleWhitelistedIntermediaries()
•

Set an arbitrary whitelisted factory address ( ), by calling .whitelistedFactory setWhitelistedFactory()•

Set an arbitrary high fee up to , or ( ), by calling .type(uint32).max 4294967295 42.949.672,95 % feeBps setFee()•

Withdraw an arbitrary ETH amount from the contract to its address, by calling .withdraw()•

Withdraw an arbitrary amount of any ERC20 from the contract to its address, by calling .withdrawERC20()•

Liquidate any liquidable NFT to itself, by calling .liquidateNFT()•

Withdraw any NFT with an outstanding loan to itself, by calling .withdrawNFT()•

The contract contains the following privileged roles:PineWallet01.sol

, as initialized during deployment to :• owner msg.sender

Renounce his role and thereby disable all following listed actions, by calling .renounceOwnership()•

Assign an arbitrary address as new , by calling .owner transferOwnership()•

Call an arbitrary function of an address not in the mapping with the context of the contract, by calling .collateralizedCollections[] call()•

Withdraw an arbitrary ETH amount from the contract to its address, by calling .withdraw()•

Is the address that is checked against as the only valid signer in .isValidSignature()•

Clarify the impact of these privileged actions to the end-users via publicly facing documentation.Recommendation:

The team has acknowledged this issue, stating thatUpdate: We acknowldged that all found issues are intended behaviour in this QSP. We will improve
documentation.

QSP-12 Events not emitted on state change

Severity: Informational

MitigatedStatus:

, , , ,

,

File(s) affected: contracts/CloneFactory02.sol contracts/ERC721LendingPool02.sol contracts/ERC1155LendingPool02.sol contracts/PineFinancing01.sol
contracts/ControlPlane01.sol contracts/PineWallet01.sol

An event should always be emitted when a state change is performed in order to facilitate smart contract monitoring by other systems which want to integrate with the smart

contract.

Description:

This is not the case for the functions and the correspondingly modified state variables:

1. , after changing .CloneFactory02.toggleWhitelistedTarget() targets[]

2. , after changing .ERC721LendingPool02.setBlockLoanLimit() blockLoanLimit

3. , after changing .ERC1155LendingPool02.setBlockLoanLimit() blockLoanLimit

4. , after changing .ERC721LendingPool02.setDurationParam() durationSeconds_poolParam[]

5. , after changing .ERC1155LendingPool02.setDurationParam() durationSeconds_poolParam[]

6. , after changing .ERC721LendingPool02.updateBlockLoanAmount() blockLoanAmount[]

7. , after changing .ERC1155LendingPool02.updateBlockLoanAmount() blockLoanAmount[]

8. , after changing .PineFinancing01.setWhitelistedMethods() approvedMethods[]

9. , after changing .ControlPlane01.toggleWhitelistedIntermediaries() whitelistedIntermediaries[]

10. , after changing .ControlPlane01.setWhitelistedFactory() whitelistedFactory

11. , after changing .ControlPlane01.setFee() feeBps

12. , after changing .PineWallet01.depositCollateral() collateralizedCollections[]

Emit an event in the aforementioned functions.Recommendation:

Partially fixed in commit afa8c09, by emitting events in and . All other

occurences have not been fixed.

Update: ERC721LendingPool02.setDurationParam() ERC1155LendingPool02.setDurationParam()

1. Unresolved

2. Unresolved

3. Unresolved

4. Resolved

5. Resolved

6. Unresolved

7. Unresolved

8. Unresolved

9. Unresolved

10. Unresolved

11. Unresolved



QSP-13 Missing the pausable modifier in the functionflashLoan

Severity: Undetermined

FixedStatus:

File(s) affected: contracts/ERC721LendingPool02.sol

In the function, the modifier is missing, and thus if anything happens to the contract, the function will be working and unstoppable.Description: flashloan pausable flashloan

Clarify if this is intended behavior and if not make sure to add the modifier.Recommendation: pausable

Fixed in commit 07fa774, by adding the modifier to said functions.Update: whenNotPaused

Automated Analyses

Slither

The majority of the issues alerted by slither are false positive.

Code Documentation

1. Unresolved items in code:TODO

1. L64 and L83 of : (Unresolved)ControlPlane01.sol TODO: check unhealthy

2. Typo on L12 of : → . (Unresolved)PineWallet01.sol evnets events

Adherence to Best Practices

1. It's better to use instead of in the function located in the contract. (Fixed)create2 create createClone CloneFactory02.sol

2. To facilitate logging, it is recommended to index address parameters within events. Therefore, the keyword should be added to the (other) address parameters
in

indexed

1. , (Fixed)CloneFactory02.Cloned()

3. Use explicit types/type widths (i.e. use over ). Affected lines: (Fixed)uint256 uint

1. : L24.PineFinancing01.sol

2. : L15 and L59.Router01.sol

3. : L27, L28, L29, L30, L42, L53, L59, L65 and L80.WETH.sol

4. : L47 and L53.PineWallet01.sol

5. : L17.PineLendingLibrary.sol

6. : L15, L29, L34, L35 and L36.ControlPlane01.sol

7. : L35, L36, L37, L79, L80 and L81.VerifySignaturePool02.sol

4. To improve readability and lower the risk of introducing errors when making code changes, it is advised to not use magic constants throughout code, but instead declare
them once (as constant and commented) and use these constant variables instead. Following instances should therefore be changed accordingly (Fixed):

1. on L133 and L341 of .10000000000 ERC721LendingPool02.sol

2. on L134 and L348 of .10000000000 ERC1155LendingPool02.sol

3. on L220 and L229 of .10000 ERC721LendingPool02.sol

4. on L222 and L231 of .10000 ERC1155LendingPool02.sol

5. on L23 of .10000000000 PineLendingLibrary.sol

5. To ensure correct behavior, function return values should always be checked. Accordingly, consider adding checks for the following cases: (Fixed)

1. L46 of Router01.sol

2. L48 of LoanRollover01.sol

6. To improve readability and code quality, consider using meaningful variable names instead of short abbreviations. In this regard, consider renaming variables , , , ,
, and in and with the corresponding field names. (Acknowledged)

a b c e

f g h ControlPlane01.liquidateNFT() ControlPlane01.withdrawNFT() LoanTerms

7. For improved readability and code quality, it is advised to remove duplicate or unused code. In this regard, consider the following cases: (Fixed)

1. Function always returns an unused second return value of . Consider removing it.PineLendingLibrary.isUnHealthyLoan() 0

2. Contracts and share the same function and . Consider dropping the ones in
and instead import and re-use those in .

PineWallet01.sol VerifySignaturePool02.sol recoverSigner() splitSignature()

PineWallet01.sol VerifySignaturePool02.sol

3. Variable on L34 of is unused and should therefore be removed._allowList PineWallet01.sol

8. Variable in is only written to once with and with a constant string. Consider therefore declaring it a constant and initialized state
variable instead. (Fixed)

_baseURIextended PineWallet01.sol

9. Contracts and share many identical and many near identical functions. To improve readability and
maintainability, consider unifying those into a shared library. (Acknowledged)

ERC721LendingPool02.sol ERC1155LendingPool02.sol

10. There are multiple functions with no internal calls that are declared public, whereas declaring them external may result in gas savings. (Fixed)



• onERC721Received

• initialize

• setBlockLoanLimit

• setDurationParam

• pause

• unpause

Test Results

Test Suite Results

truffle test

√ should approve the contract for spending NFTs
√  should mint NFTs
√  should not borrow more than what it could
√  should not supply fake valuation
√  should borrow some money and the NFT is located in the contract
√  should borrow some money and the NFT is located in the contract (nftid 2)
√  should return part of the money (eating into principal)
√  should rollover
√  should return part of the money (doesn't eat into principal)
√  admin should withdraw nfts
√  admin should not withdraw nfts on lien
√  should not let people steal NFTs
√  should return all of the money
√  admin should withdraw proceeds
√  should not be liquidated when not expired
√  should not be liquidated by non-pool-owner when expired
√  should be liquidated by pool-owner when expired
√  should withdraw airdropped NFTs
√  should collateralize NFTs
√  should not operate collateralized NFTs
√  should  withdraw assets not on lien

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

cd02eea6f13cbdc20809e8c4f3ec067544b7613119281f32e645a3c594f56b41 ./contracts/CloneFactory02.sol

43909573183c88287e1d47e06854a21404032a9aeffb7ca4e6097fffb28c7f8e ./contracts/ControlPlane01.sol

6b4f85a358000e24a4e8e8cbc825a18ec22c19b4843dc7895830bfd5d767990a ./contracts/ERC1155LendingPool02.sol

62d72c5ca4132178fddd986e0b289cf1924f6086b3e5123fe04aad2ab249a3c4 ./contracts/ERC721LendingPool02.sol

12bc031207b72c860d555d7b5b75ae296e5ef276d6fe9870b5cd9da9ea090315 ./contracts/LoanRollover01.sol

2e72e6c3288c7101a1035314e0af381f8be7ae13d6cfc5c0b75e4275643660f7 ./contracts/PineFinancing01.sol

caeb022107087e3f0ad43bbc693cc18aacf0f25dc9a2d6c4a7809867df039a04 ./contracts/PineLendingLibrary.sol

d3d0e998443126d5c1a1dc9d7ca56c32f8da7975b358e0e3c768540299a7af1c ./contracts/PineWallet01.sol

781c33ebed10ba21f3405f17e56464fc8190c101b3df093e3a874602071e6cd1 ./contracts/Router01.sol

66a60bf91f90384b79ae66000124ef507a6985b7c38787b6c5b626255c109e73 ./contracts/VerifySignaturePool02.sol

9a3d3c83efc2f89ba8c0fb40fe3e6b0d1a917a1e3e3faefcd7c2fce8b801a308 ./contracts/interfaces/ICloneFactory02.sol

d87c4b6d0c849e98c65f872ebc960f9e0cff24e70ec0f2aba31b94ac07c21ebe ./contracts/interfaces/IControlPlane01.sol

32d071d5d57deb257798f4b4a68ace7ae5db44e74302b3383f7e58460d346cc3 ./contracts/interfaces/IFlashLoanReceiver.sol

7ee61e2137732d34054c1fad7c973b8491eee3a3d7838b361790ea7f592ec5db ./contracts/interfaces/WETH.sol

Tests

a8d67cd1870a4d34b0449405790bc8d9a415f7a27969940e6c1437298c1a575e ./test/erc721lendingpool02.js

26ae5f2c89351b60c5cc6480e6c815acfc8b29b3f0b8844307bf96150a05754f ./test/pinewallet.js

Changelog

2022-05-02 - Initial report•

2022-05-17 - Final report•



About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Pine Audit


