
February 15th 2023 — Quantstamp Verified

LandX Finance

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Tokenized Commodities and Perpetual Vaults

Auditors Ibrahim Abouzied, Auditing Engineer

Marius Guggenmos, Senior Research Engineer

Jonathan Mevs, Auditing Engineer

Timeline 2022-10-31 through 2022-11-10

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification LandX Smart Contract Documentation

LandX Whitepaper

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

LandXit/land-x-smart-
contracts

a04e915
initial audit

LandXit/land-x-smart-
contracts

a0afdd1
fixes

Total Issues 25 (24 Resolved)

High Risk Issues 5 (5 Resolved)

Medium Risk Issues 4 (3 Resolved)

Low Risk Issues 6 (6 Resolved)

Informational Risk Issues 8 (8 Resolved)

Undetermined Risk Issues 2 (2 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://landxit.github.io/land-x-smart-contracts/
https://landx.gitbook.io/landx/whitepaper/download-whitepaper
https://github.com/LandXit/land-x-smart-contracts
https://github.com/LandXit/land-x-smart-contracts
https://github.com/LandXit/land-x-smart-contracts
https://github.com/LandXit/land-x-smart-contracts

Summary of Findings

LandX is a protocol that offers tokenized commodities and perpetual vaults for agricultural products. Farmers raise capital by selling ownership shares of their crops sales to investors.

Investors purchase the tokenized commodity in hopes of having an inflation hedged return. Farmers are held accountable through legal contracts secured on the underlying farmland.

We found several high-severity issues, mostly surrounding incorrect accounting in the reward mechanism, lack of support of multiple crops, and vulnerability to sandwich attacks. We

encourage the LandX team to address these issues before launch.

The test suite showed high coverage for the contracts under test. However, for some contracts, no tests exist at all and the existing tests were not diverse enough to catch issues like the

hardcoded crop type. We highly recommend adding tests for all contracts and improving the existing ones to catch the issues found in this report.

Though the LandX protocol is built on a decentralized platform, the protocol does grant special privileges to the contract owners. While this is by design and may be necessary given the

protocol's business requirements, we would like to note to users that the LandX protocol is not an entirely trustless system. Contract owners may be able to redirect user funds or

manipulate trusted addresses. We encourage the LandX team to follow security best practices to keep any privileged addresses from being compromised. Additionally, parts of the

protocol will need to be enforced offline and some risk management is also done off-chain.

The team has addressed all of the issues.Update:

ID Description Severity Status

QSP-1 Sandwich Attacks High Fixed

QSP-2 Missing Support for Multiple Crops High Fixed

QSP-3 Not Minted to ReceiverxBasket High Fixed

QSP-4 Incorrect Rewards Accounting for Vested Tokens High Fixed

QSP-5 Is Not Always UpdatedrewardSharesPerToken High Fixed

QSP-6 Identical Token Symbols for cTokens Medium Fixed

QSP-7 Maximum Allowable Crop Share Not Enforced Medium Fixed

QSP-8 Farmers Not Guaranteed NFT Return Medium Acknowledged

QSP-9 Unclear Precision Used Medium Fixed

QSP-10 Hardcoded Price Used for xToken Low Fixed

QSP-11 Ownership Can Be Renounced Low Fixed

QSP-12 Missing Input Validation Low Fixed

QSP-13 Require Message Deviates From Checked Condition Low Fixed

QSP-14 Inconsistent Return Values for calculateGrantClaim() Low Fixed

QSP-15 Missing Address Validation Low Mitigated

QSP-16 Does Not Account for Potential YieldtotalAssets Informational Fixed

QSP-17 No Error Handling for Failed Grain Price Assignment Informational Fixed

QSP-18 Untraceable Contract Events Informational Fixed

QSP-19 Significant Centralization Informational Mitigated

QSP-20 Unlocked Pragma Informational Fixed

QSP-21 Unnecessary Use of in Solidity 0.8.xSafeMath Informational Fixed

QSP-22 Inherited Contract Unused Informational Fixed

QSP-23 Incorrect Version of Solidity Informational Fixed

QSP-24 Auto Compound Potentially Vulnerable to Sandwich AttackxBasket Undetermined Fixed

QSP-25 Returns Inaccurate ValuesunstakePreview() Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

DISCLAIMER:

The audit was performed on the following files only:

• contracts/*

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.3• Slither

Steps taken to run the tools:

1. Install the Slither tool: pip3 install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Sandwich Attacks

Severity: High Risk

FixedStatus:

File(s) affected: xToken.sol

A common attack in DeFi is the sandwich attack. Upon observing a trade of asset X for asset Y, an attacker front-runs the victim trade by also buying asset Y, lets the victim execute

the trade, and then executes another trade after the victim by trading back the amount gained in the first trade. Intuitively, one uses the knowledge that someone is going to buy an asset, and

that this trade will increase its price, to make a profit. The attacker’s plan is to buy this asset cheaply, let the victim buy at an increased price, and then sell the received amount again at a

higher price afterward.

Description:

The function of converts both the shards mint fee and the from to USDC through a Uniswap router. The and

variables specified in the required for the Uniswap swap are set to 1, and 0 respectively, which will execute the swap even if there is one

USDC returned to the user or a price of zero for the . A savvy user could front-run these swaps to minimize the USDC returned to the contract following the swap and profit off of

getShards() xToken xTokensAnnualRent xToken amountOutMinimum
sqrtPriceLimitX96 ExactInputSingleParams

xToken xToken

https://github.com/crytic/slither

the price change. This issue is also present in , except they would be front-running USDC to swaps.xBasket.autoCompoundRewards() xToken

Exploit Scenario:

1. Attacker sees a transaction containing in the pending transaction pool.getShards()

2. Attacker swaps a large amount of the corresponding for USDC in the target pool, significantly decreasing the price of the .xToken xToken

3. in the function receives a lot less USDC from the corresponding swap. Additionally, this swap further decreases the price of
.

convertToUsdc() getShards() xToken

xToken

4. Attacker swaps USDC for and receives more than they begin with due to the price decrease.xToken xTokens

Sandwich attacks are hard to prevent reliably without a user-defined minimum output amount or an oracle-computed price. It's recommended to keep the trade order size low

relative to the pool's liquidity to make such attacks economically less attractive, or only use pools for highly liquid tokens.

Recommendation:

Limit and to a reasonable value to minimize slippage during the Uniswap swaps. Additionally, consider using a TWAP pricing mechanism instead of

spot price.

amountOutMinimum sqrtPriceLimitX96

Consider adding a parameter to that denotes a fair price for xTokens, e.g. 99% of the current market value. This value should then be passed to the function

and used to compute a slippage-protected token amount out.

getShards() convertToUsdc()

The team now calculates a time-weighted average price across the previous hour. We suggest that the be made configurable should a different interval be required in

the future.

Update: twapInterval

QSP-2 Missing Support for Multiple Crops

Severity: High Risk

FixedStatus:

,File(s) affected: xToken.sol xBasket.sol

The state variable in is set to the constant value, "CORN". The constructor is designed to receive a value for the string of the crop being created, however, this

is just used for the name of the ERC20 token, and not for the assignment of the state variable. This protocol is intended to work around multiple crops (e.g. xSOY, xWHEAT) however this

constant state variable does not allow this as any reading of this state will read "CORN". Further, only considers four predetermined crops. While it is understood that these are the

four crops that the will be beginning with, the team should have the functionality to add or remove crops used in the as needed.

Description: crop xToken xToken
crop

xBasket
xBasket xBasket

The state variable should be assigned during construction so that a variety of crops can be supported as the platform intends. Additionally, the team should

have the functionality to modify the crops used in .

Recommendation: xToken.crop
xBasket

The variable is now assigned in the constructor. The team has decided to restrict to four crops and said that there are currently no plans to add additional crops to the

protocol.

Update: crop xBasket

QSP-3 Not Minted to ReceiverxBasket

Severity: High Risk

FixedStatus:

File(s) affected: xBasket.sol

The specified receiver of the function in never receives the minted xBasket tokens as intended. Additionally, the and functions check

whether the receiver is able to mint/deposit the requested amount whereas the funds are taken from the .

Description: _deposit() xBasket deposit() mint()
msg.sender

should be minted to the address specified as the when is called, not . Update the require statements in and

to check the .

Recommendation: xBasket receiver _deposit() _msgSender() mint()
deposit() msg.sender

Tokens are now minted to the .Update: receiver

QSP-4 Incorrect Rewards Accounting for Vested Tokens

Severity: High Risk

FixedStatus:

File(s) affected: LNDX.sol

The contract uses the global variables and to track the amount of rewards and fees to distribute on a per token basis. To

track how many rewards each user should receive, the contract stores the amount the user is not entitled to in the mappings and . The simplified computation

for the rewards of a user is then . Whenever a user claims rewards, will therefore need to be

updated to exclude the rewards that have just been claimed by adding them to . The code however subtracts the claimed rewards from (L198), which

means the user will be able to claim even more tokens with each claim. Similarly, the code subtracts the fee that has been distributed from instead of adding it (L192).

Additionally, the amount used is likely wrong since all tokens - including unvested ones - are used when computing the rewards.

Description: LNDX rewardSharesPerToken feeSharesPerToken
rewardsPerGrant feePerGrant

amountOfTokens * rewardSharesPerToken - rewardsPerGrant rewardsPerGrant
rewardsPerGrant rewardsPerGrant

feePerGrant

Exploit Scenario:

1. Alice is granted 10 through the function over four years. She therefore receives 10 . The is equal to 100 at the time of
the grant, which means is initialized with 100 * 10 = 1000 (ignoring the precision for simplicity).

LNDX grantLNDX() veLNDX rewardSharesPerToken

rewardsPerGrant

2. After the first tokens vested, Alice calls . Time has passed to vest just 1 token. We assume updates
from 100 to 200. The amount of for Alice is therefore * - , i.e. 10 * 200 - 1000 = 1000. The rewards are
then 1 * 1000 / 10 = 100, which is then subtracted from .

claimVestedTokens() rewardsToDistribute() rewardsPerShare

totalRewards veTokens rewardSharesPerToken rewardsPerGrant

rewardsPerGrant

3. After another token vested, Alice calls again. Assuming updates from 200 to 300, the amount of
for Alice is now 10 * 300 - 900 = 2100, even though it should be 1000 again.

claimVestedTokens() rewardsToDistribute() rewardsPerShare

totalRewards

Fix the code by adding the claimed rewards to and instead of subtracting them. Additionally, should be a subset of

proportional to the percentage of the grant claimed.

Recommendation: rewardsPerGrant feePerGrant rewards
totalRewards

now correctly calculates a user's rewards and guarantees them their full set of rewards by the time the grant concludes.Update: claimVestedTokens()

QSP-5 Is Not Always UpdatedrewardSharesPerToken

Severity: High Risk

FixedStatus:

File(s) affected: LNDX.sol

When is called, it mints the vested tokens and increments the . However, the is not incremented if

the vesting has fully completed at the time of the function call, as seen in the following code segment on L245:

Description: rewardsToDistribute() rewardSharesPerToken rewardSharesPerToken

if (elapsedDays >= rewardVestingDuration) {
amountVested = MAX_REWARD_AMOUNT.sub(rewardVested.amountVested);
_mint(address(this), amountVested);
rewardVested.amountVested += amountVested;
rewardVested.lastVestedAt = block.timestamp;

}

Update the code segment to properly update the .Recommendation: rewardSharesPerToken

is now updated in all cases.Update: rewardSharesPerToken

QSP-6 Identical Token Symbols for cTokens

Severity: Medium Risk

FixedStatus:

File(s) affected: cToken.sol

The constructor instantiates the ERC20 symbol of all cTokens created as "cCorn". This creates cTokens with identical symbols.Description: cToken

Use the value passed to the constructor in the ERC20 constructor.Recommendation: _crop

The ERC20 symbol is now based on the variable.Update: _crop

QSP-7 Maximum Allowable Crop Share Not Enforced

Severity: Medium Risk

FixedStatus:

File(s) affected: nft.sol

The maximum allowable crop share value stored in is unused when minting a new LandXNFT. With nothing limiting the assignable value of the crop

shares, LandXNFTs can be minted with crop share values that exceed the for the given crop as specified in .

Description: KeyProtocolVariables
maxAllowableCropShare KeyProtocolVariables

When minting a new LandXNFT, ensure that the crop share does not exceed the corresponding value stored in . If the

team no longer needs to enforce this maximum share, then documentation should be updated accordingly.

Recommendation: maxAllowableCropShare KeyProtocolVariables

The variable has been removed.Update: maxAllowableCropShare

QSP-8 Farmers Not Guaranteed NFT Return

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: xToken.sol

When Farmers first deposited the LandXNFT, they received less shards than the NFT was valued at in xTokens, based on the deduction of the fees and yearly rent. Farmers who wish

to get their NFT returned are required to have an xToken balance of at least the original value of calculated shards. It is understood that that shard amount represents the underlying value of the

NFT, however, in a situation where a lot of farmers are looking to buy back xTokens to meet the balance requirement of getting their NFT returned, there could be more xTokens locked in protocol

accounts than are available for sale to Farmers.

Description:

Provide alternative methods for farmers to retrieve a deposited NFT in case of insufficient xToken liquidity.Recommendation:

The team has mitigated the issue by reducing the number of a farmer needs to supply themselves to return an NFT by burning the farmer's security deposit and using their

surplus rent to buy and burn .

Update: xTokens
xTokens

They also stated the following: "It is not possible to provide an alternative method to retrieve a deposited NFT because this would lead to a yield bearing asset in circulating supply without any

backing. xTokens taken as fees are provided to the Uniswap pool where they are made available at market value. In the example of limited supply the price would appreciate causing an incentive

for users to make more xTokens available in accordance with market principles."

QSP-9 Unclear Precision Used

Severity: Medium Risk

FixedStatus:

, , , ,File(s) affected: rentFoundation.sol LNDX.sol OraclePrices.sol xBasket.sol xToken.sol

The contracts use different precision values throughout the code base without properly documenting them. Constants such as , , and are just some

of the constants that can be found in the code. Without documentation, it is impossible to verify that the correct precision is used everywhere.

Description: 10 ** 3 1e6 10 ** 7 10**9

Clearly document assumptions about expected precisions with comments in the code.Recommendation:

Precision values are now documented by inline comments.Update:

QSP-10 Hardcoded Price Used for xToken

Severity: Low Risk

FixedStatus:

File(s) affected: OraclePrices.sol

While it may be acceptable to use hardcoded prices pre-launch, these prices should not be used following the LandX launch. If the Uniswap pool for the queried xToken does not

exist, these hardcoded values are used.

Description:

Following the launch, only prices from the Uniswap pool should be used.Recommendation:

now reverts if no pool is found after the protocol has launched.Update: getXTokenPrice()

QSP-11 Ownership Can Be Renounced

Severity: Low Risk

FixedStatus:

, , , , , , ,File(s) affected: cToken.sol KeyProtocolVariables.sol LNDX.sol OraclePrices.sol rentFoundation.sol xBasket.sol xToken.sol xTokenRouter.sol

If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by the modifier will no longer be able

to be executed.

Description: onlyOwner

Confirm whether or not this is the desired functionality. If not, disable so that the contract always has an owner.Recommendation: renounceOwnership()

The function has been overridden to revert if called, maintaining the ownership role.Update: renounceOwnership()

QSP-12 Missing Input Validation

Severity: Low Risk

FixedStatus:

File(s) affected: KeyProtocolVariables.sol

Related Issue(s): SWC-123

It is important to validate inputs, even if they only come from trusted addresses, to avoid human error. The functions , ,

, , , in do not impose

bounds on the values being set. This allows for fees over 100% to be assigned which would result in the loss of user funds.

Description: updateXTokenMintFee() updateCTokensSellFee()
updatePayRentFee() updateMaxAllowableCropShare() updateHedgeFundAllocation() updateSecurityDepositMonths() KeyProtocolVariables

A non-exhaustive list of functions missing validation includes:

: Confirm that the following functions update variables to reasonable values (Ex. confirm that percentages cannot be above 100%).• KeyProtocolVariables
updateXTokenMintFee()•

updateCTokenSellFee()•

updatePayRentFee()•

updateHedgeFundAllocation()•

: Validate that is not an empty string.• nft.setBaseURI() newuri

: Confirm that the grain exists.• OraclePrices.setGrainPrice()

: Confirm that the xToken exists.• OraclePrices.setXTokenPrice()

: Perform the same require statements performed in .• xToken.preview() getShards()

We recommend adding the relevant checks. Impose reasonable bounds on the values being assigned in these functions.Recommendation:

The input validation is now present for all cases except for . The client provided the following explanation: " ,

- no reason to add check to confirm grain exists because these methods can be used for adding prices for new grains/ (example

/)."

Update: OraclePrices OraclePrices.setGrainPrice()
OraclePrices.setXTokenPrice() xTokens
COFFEE xCOFFEE

QSP-13 Require Message Deviates From Checked Condition

Severity: Low Risk

FixedStatus:

File(s) affected: LNDX.sol

The function checks that the argument is less than five years when the require message states that it should be less than one year.Description: grantLNDX() cliffInMonths

Clarify whether the bound is one or five years and either adjust the condition or the message accordingly.Recommendation:

The message has been fixed to align with the requirement.Update:

QSP-14 Inconsistent Return Values for calculateGrantClaim()

Severity: Low Risk

FixedStatus:

File(s) affected: LNDX.sol

currently behaves inconsistently. If the entire vesting duration has elapsed, it returns a tuple of the full vesting duration and any unclaimed rewards. If

only part of the vesting duration has elapsed, it returns a tuple of the number of vested but unclaimed days, and the number of unclaimed rewards. An excerpt of the function is included below:

Description: calculateGrantClaim()

// Check cliff was reached
uint256 elapsedDays = block.timestamp.sub(grant.startTime - 1 days).div(

1 days
);

// If over vesting duration, all tokens vested
if (elapsedDays >= grant.vestingDuration) {

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123

uint256 remainingGrant = grant.amount.sub(grant.totalClaimed);
return (grant.vestingDuration, remainingGrant); // <- Returns full vesting duration (of which only a subset may be unclaimed)

} else {
uint16 daysVested = uint16(elapsedDays.sub(grant.daysClaimed));
uint256 amountVestedPerDay = grant.amount.div(

uint256(grant.vestingDuration)
);
uint256 amountVested = uint256(daysVested.mul(amountVestedPerDay));
return (daysVested, amountVested); // <- returns only the unclaimed vested days

}

Update to either always return the number of unclaimed but vested days or the number of vested days.Recommendation: calculateGrantClaim()

now always returns the number of unclaimed but vested days.Update: calculateGrantClaim()

QSP-15 Missing Address Validation

Severity: Low Risk

MitigatedStatus:

, , , , , , , ,

,

File(s) affected: cToken.sol KeyProtocolVariables.sol LNDX.sol LNDXGovernor.sol OracleMulti.sol OraclePrices.sol rentFoundation.sol xBasket.sol
xToken.sol xTokenRouter.sol

Some functions do not validate their input addresses to be non-zero, which can result in unexpected behavior by the contracts. A non-exhaustive list includes:Description:

• cToken.constructor()

• cToken.setRentFoundation()

• cToken.setXTokenRouter()

• KeyProtocolVariables.constructor()

• KeyProtocolVariables.updateHedgeFundWallet()

• KeyProtocolVariables.updateLandxOperationalWallet()

• KeyProtocolVariables.updateLandxChoiceWallet()

• KeyProtocolVariables.updateXTokensSecurityWallet()

• KeyProtocolVariables.updateValidatorCommisionWallet()

• LNDX.constructor()

• LNDXGovernor.constructor()

• nft.constructor()

• nft.setXTokenRouter()

• OracleMulti.updateOraclePrices()

• OraclePrices.constructor()

• RentFoundation.constructor()

• RentFoundation.setXTokenRouter()

• RentFoundation.setGrainPrices()

• RentFoundation.changeLandXNFTAddress()

• xBasket.constructor()

• xToken.constructor()

• xToken.changeLandXNFTAddress()

• xToken.changeXBasketAddress()

• xToken.setRentFoundation()

• xToken.setOraclePrices()

• xToken.setXTokenRouter()

• xTokenRouter.setToken()

Add the missing address validation.Recommendation:

Most addresses are now checked, but a few remain unchecked:Update:

in• _dao KeyProtocolVariables.constructor()

and in .• _xTokenRouter _keyProtocolValues LandXNFT.constructor()

in .• _quoter xBasket.constructor()

in .• _oraclePrices xToken.constructor()

and in .• _quoter _uniswapRouter xToken.updateUniswapContracts()

QSP-16 Does Not Account for Potential YieldtotalAssets

Severity: Informational

FixedStatus:

File(s) affected: xBasket.sol

EIP-4626 specifies the following requirement for :Description: totalAssets()

SHOULD include any compounding that occurs from yield.

However, the current implementation of does not account for the potential yield.totalAssets()

Update to account for the yield.Recommendation: totalAssets()

now calls which accounts for yield.Update: totalAssets() calculateTVL()

QSP-17 No Error Handling for Failed Grain Price Assignment

Severity: Informational

FixedStatus:

File(s) affected: OracleMulti.sol

There is no error handling in the case that fails in the Chainlink fulfill functions found in . Setting the grain price will fail if an

invalid price was returned from the Chainlink request and the contract should react accordingly.

Description: oraclePrices.setGrainPrice() OracleMulti

Emit an event for listeners to see whether the price assignment failed or succeeded.Recommendation:

An event signaling a failed price assignment is now emitted.Update:

QSP-18 Untraceable Contract Events

Severity: Informational

FixedStatus:

,File(s) affected: xToken.sol xBasket.sol

Staking and unstaking xTokens, as well as auto-compounding xBasket rewards, does not emit events and is therefore untraceable. This inhibits off-chain monitoring of these events.Description:

Emit events in the , , , and functions.Recommendation: xToken.stake() xToken.unstake() xToken.claim() xBasket.autoCompoundRewards()

The events have been included as suggested.Update:

QSP-19 Significant Centralization

Severity: Informational

MitigatedStatus:

The owner of the contract has substantial power by being able to modify the addresses of the , , , and contracts being

used for the functionality of . Substantial trust in the owner is required for this contract to function as intended because the protocol depends on accurate real-world commodity data.

Description: xToken LandX xBasket RentFoundation oraclePrices
xToken

This centralization of power needs to be made clearer to users. Additionally, we recommend the team move towards a more decentralized model for modifying key contracts of

the protocol and use a multi-sig wallet if one is not currently being used.

Recommendation:

The team has removed all setters except for the address, mentioning: " address should be changeable because it is deployed after . We have plans that we

will use multi-sig wallet as owner of protocol contracts."

Update: xBasket xBasket xTokens

Though will be deployed following , this restriction can be circumvented by predetermining the address.xBasket xTokens

QSP-20 Unlocked Pragma

Severity: Informational

FixedStatus:

Related Issue(s): SWC-103

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,

meaning that the compiler will use the specified version , hence the term "unlocked".

Description: pragma solidity (^)0.8.* ^
and above

For consistency and to prevent unexpected behavior in the future, we recommend to remove the caret to lock the file onto a specific Solidity version.Recommendation:

The contracts are locked to use version .Update: 0.8.16

QSP-21 Unnecessary Use of in Solidity 0.8.xSafeMath

Severity: Informational

FixedStatus:

File(s) affected: LNDX.sol

Solidity 0.8.x has a built-in mechanism for dealing with overflows and underflows. There is no need to use the library (it only increases gas usage).Description: SafeMath

We recommend against using in Solidity 0.8.x.Recommendation: SafeMath

The library has been removed.Update: SafeMath

QSP-22 Inherited Contract Unused

Severity: Informational

FixedStatus:

File(s) affected: OraclePrices.sol

The contract inherits from both and . is unused and provides only a subset of the

functionality and can thus be removed.

Description: OraclePrices Ownable AccessControlEnumerable Ownable
AccessControlEnumerable

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103

Remove from the contract.Recommendation: Ownable OraclePrices

The unused contracts have been removed.Update:

QSP-23 Incorrect Version of Solidity

Severity: Informational

FixedStatus:

The contracts currently use solidity version . Due to a in the solidity compiler since version , this version is not in the .Description: 0.8.6 medium severity bug 0.5.8 list of recommended versions

Consider using solidity version instead and refer to the for up to date suggestions.Recommendation: 0.8.16 list of recommended versions

The contracts now use version .Update: 0.8.16

QSP-24 Auto Compound Potentially Vulnerable to Sandwich AttackxBasket

Severity: Undetermined

FixedStatus:

File(s) affected: xBasket.sol

Similar to the sandwich attack issue, the also converts tokens using the UniswapV3 router without specifying a minimum amount out. Since sandwich attacks are

only profitable for larger trades, it is unclear whether the yields from auto compounding are large enough to be at risk.

Description: xToken xBasket

Create a model for how large the rewards will likely be in practice when auto compounding to determine whether sandwich attacks are a real threat. If it turns out that

attacks are feasible, consider adding an array parameter to . The array should contain a fair price for each that is being bought. Use these prices to compute

a minimum amount of tokens out in the function.

Recommendation:

autoCompundRewards() xToken
convertToXToken()

The team now calculates a time-weighted average price across the previous hour. We suggest that the be made configurable should a different interval be required in

the future.

Update: twapInterval

QSP-25 Returns Inaccurate ValuesunstakePreview()

Severity: Undetermined

FixedStatus:

File(s) affected: LNDX.sol

returns a tuple of the staked amount, rewards, and fees for a given if it were to be unstaked. However, the rewards value is not guaranteed to be

accurate because is dependent on , which can be modified by the call in . The

function does not take into account possible changes to when is called.

Description: unstakePreview() stakeID
computeStakeReward() rewardSharesPerToken rewardsToDistribute() unstake()

previewUnstake() rewardSharesPerToken rewardsToDistribute()

Update to account for possible changes to .Recommendation: unstakePreview() rewardSharesPerToken

has been updated to account for changes in staking rewards that have taken place over time.Update: unstakePreview()

Automated Analyses

Slither

LNDX.claimVestedTokens() (contracts/LNDX.sol#174-203) ignores return value by IERC20(usdc).transfer(msg.sender,fee) (contracts/LNDX.sol#200)
LNDX.unstake(uint256) (contracts/LNDX.sol#354-375) ignores return value by IERC20(usdc).transfer(msg.sender,fee) (contracts/LNDX.sol#373)
RentFoundation.payRent(uint256,uint256) (contracts/rentFoundation.sol#94-117) ignores return value by usdc.transfer(keyProtocolValues.hedgeFundWallet(),((amount - platformFee - validatorFee) *
keyProtocolValues.hedgeFundAllocation()) / 10000) (contracts/rentFoundation.sol#103-107)
RentFoundation.payRent(uint256,uint256) (contracts/rentFoundation.sol#94-117) ignores return value by usdc.transfer(keyProtocolValues.validatorCommisionWallet(),validatorFee) (contracts/rentFoundation.sol#108-111)
RentFoundation.sellCToken(address,uint256) (contracts/rentFoundation.sol#146-154) ignores return value by usdc.transfer(account,usdcAmount - cellTokenFee) (contracts/rentFoundation.sol#152)
RentFoundation.feeDistributor(uint256) (contracts/rentFoundation.sol#156-171) ignores return value by usdc.transfer(lndx,lndxFee) (contracts/rentFoundation.sol#161)
RentFoundation.feeDistributor(uint256) (contracts/rentFoundation.sol#156-171) ignores return value by usdc.transfer(keyProtocolValues.landxOperationalWallet(),operationalFee) (contracts/rentFoundation.sol#163-166)
RentFoundation.feeDistributor(uint256) (contracts/rentFoundation.sol#156-171) ignores return value by usdc.transfer(keyProtocolValues.landxChoiceWallet(),_fee - lndxFee - operationalFee) (contracts/rentFoundation.sol#167-
170)
xBasket._withdraw(address,address,address,uint256,uint256) (contracts/xBasket.sol#313-335) ignores return value by IXToken(xWheat).transfer(receiver,assets) (contracts/xBasket.sol#330)
xBasket._withdraw(address,address,address,uint256,uint256) (contracts/xBasket.sol#313-335) ignores return value by IXToken(xSoy).transfer(receiver,assets) (contracts/xBasket.sol#331)
xBasket._withdraw(address,address,address,uint256,uint256) (contracts/xBasket.sol#313-335) ignores return value by IXToken(xRice).transfer(receiver,assets) (contracts/xBasket.sol#332)
xBasket._withdraw(address,address,address,uint256,uint256) (contracts/xBasket.sol#313-335) ignores return value by IXToken(xCorn).transfer(receiver,assets) (contracts/xBasket.sol#333)
XToken.getShards(uint256) (contracts/xToken.sol#143-229) ignores return value by ERC20(usdc).transfer(keyProtocolValues.hedgeFundWallet(),toHedgeFund) (contracts/xToken.sol#207-210)
XToken.getShards(uint256) (contracts/xToken.sol#143-229) ignores return value by ERC20(usdc).transfer(address(rentFoundation),usdcAnnualRent - toHedgeFund) (contracts/xToken.sol#211-214)
XToken.feeDistributor(uint256) (contracts/xToken.sol#283-298) ignores return value by ERC20(usdc).transfer(lndx,lndxFee) (contracts/xToken.sol#288)
XToken.feeDistributor(uint256) (contracts/xToken.sol#283-298) ignores return value by ERC20(usdc).transfer(keyProtocolValues.landxOperationalWallet(),operationalFee) (contracts/xToken.sol#290-293)
XToken.feeDistributor(uint256) (contracts/xToken.sol#283-298) ignores return value by ERC20(usdc).transfer(keyProtocolValues.landxChoiceWallet(),_fee - lndxFee - operationalFee) (contracts/xToken.sol#294-297)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer

LNDX.grantLNDX(address,uint256,uint16,uint16) (contracts/LNDX.sol#116-172) performs a multiplication on the result of a division:
-veLNDXAmount = (amount * coefficient) / 100 (contracts/LNDX.sol#146)
-rewardsPerGrant[recipient] += (rewardSharesPerToken * veLNDXAmount) / 1e6 (contracts/LNDX.sol#151-153)

LNDX.grantLNDX(address,uint256,uint16,uint16) (contracts/LNDX.sol#116-172) performs a multiplication on the result of a division:
-veLNDXAmount = (amount * coefficient) / 100 (contracts/LNDX.sol#146)
-feePerGrant[recipient] += (feeSharesPerToken * veLNDXAmount) / 1e6 (contracts/LNDX.sol#154)

LNDX.claimVestedTokens() (contracts/LNDX.sol#174-203) performs a multiplication on the result of a division:
-veLNDXAmount = (amountVested * grant.veLndxClaimed) / grant.amount (contracts/LNDX.sol#186-187)
-fee = (veLNDXAmount * totalFee) / grant.veLndxClaimed (contracts/LNDX.sol#193)

LNDX.claimVestedTokens() (contracts/LNDX.sol#174-203) performs a multiplication on the result of a division:
-veLNDXAmount = (amountVested * grant.veLndxClaimed) / grant.amount (contracts/LNDX.sol#186-187)
-rewards = (veLNDXAmount * totalRewards) / grant.veLndxClaimed (contracts/LNDX.sol#197)

LNDX.rewardsToDistribute() (contracts/LNDX.sol#225-274) performs a multiplication on the result of a division:
-amountVestedPerDay = MAX_REWARD_AMOUNT.div(uint256(rewardVestingDuration)) (contracts/LNDX.sol#255-257)
-amountVested = uint256(daysVested.mul(amountVestedPerDay)) (contracts/LNDX.sol#258)

LNDX.calculateGrantClaim(address) (contracts/LNDX.sol#276-307) performs a multiplication on the result of a division:
-amountVestedPerDay = grant.amount.div(uint256(grant.vestingDuration)) (contracts/LNDX.sol#301-303)
-amountVested = uint256(daysVested.mul(amountVestedPerDay)) (contracts/LNDX.sol#304)

LNDX.stakeLNDX(uint256,LNDX.StakePeriods) (contracts/LNDX.sol#325-352) performs a multiplication on the result of a division:
-mintAmount = (amount * coefficients[period]) / 100 (contracts/LNDX.sol#328)
-feePerStake[stakesCount] += (feeSharesPerToken * mintAmount) / 1e6 (contracts/LNDX.sol#347)

LNDX.stakeLNDX(uint256,LNDX.StakePeriods) (contracts/LNDX.sol#325-352) performs a multiplication on the result of a division:
-mintAmount = (amount * coefficients[period]) / 100 (contracts/LNDX.sol#328)
-rewardsPerStake[stakesCount] += (rewardSharesPerToken * mintAmount) / 1e6 (contracts/LNDX.sol#348-350)

LandXNFT.uint2str(uint256) (contracts/nft.sol#95-119) performs a multiplication on the result of a division:

https://blog.soliditylang.org/2022/08/08/calldata-tuple-reencoding-head-overflow-bug/
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

-temp = (48 + uint8(_i - (_i / 10) * 10)) (contracts/nft.sol#113)
RentFoundation.getDepositBalance(uint256) (contracts/rentFoundation.sol#136-144) performs a multiplication on the result of a division:

-rentPerSecond = (landXNFT.cropShare(tokenID) * landXNFT.tillableArea(tokenID) * 10 ** 3) / delimeter (contracts/rentFoundation.sol#139-140)
-int256(deposits[tokenID].amount) - int256(rentPerSecond * elapsedSeconds / 10 ** 7) (contracts/rentFoundation.sol#141-143)

RentFoundation.sellCToken(address,uint256) (contracts/rentFoundation.sol#146-154) performs a multiplication on the result of a division:
-usdcAmount = (amount * grainPrices.prices(crop)) / (10 ** 9) (contracts/rentFoundation.sol#149)
-cellTokenFee = (usdcAmount * keyProtocolValues.cTokenSellFee()) / 10000 (contracts/rentFoundation.sol#150-151)

XToken.getShards(uint256) (contracts/xToken.sol#143-229) performs a multiplication on the result of a division:
-xTokensAnnualRent = ((annualRent * oraclePrices.prices(crop)) / oraclePrices.getXTokenPrice(xTokenRouter.getXToken(crop))) * 1e3 (contracts/xToken.sol#185-186)

XToken.getShards(uint256) (contracts/xToken.sol#143-229) performs a multiplication on the result of a division:
-toSecurityDepositsAmount = (xTokensAnnualRent / 12) * keyProtocolValues.securityDepositMonths() (contracts/xToken.sol#187-188)

XToken.preview(uint256) (contracts/xToken.sol#385-420) performs a multiplication on the result of a division:
-xTokensAnnualRent = ((annualRent * oraclePrices.prices(crop)) / oraclePrices.getXTokenPrice(xTokenRouter.getXToken(crop))) * 1e3 (contracts/xToken.sol#405-406)

XToken.preview(uint256) (contracts/xToken.sol#385-420) performs a multiplication on the result of a division:
-toSecurityDepositsAmount = (xTokensAnnualRent / 12) * keyProtocolValues.securityDepositMonths() (contracts/xToken.sol#407-408)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply

Code Documentation

1. Litepaper contains an extra period in the second paragraph of the "For Investors" section.

2. The comment above suggests that shards are being deposited to this contract, rather than being burned.xToken.getTheNFT()

3. The comment next to the state variable in suggests that validators or landowners can be stored as a validator for a given token, although
documentation suggests a validator is a separate, distinct party in the protocol. This ambiguity should not be present in a code comment.

validator LandXNFT

4. The portion of the smart contract diagram included in the Technology section of the Whitepaper is very inaccurate as to the functionality found in that
contract. For example, there is no minting or burning of xTokens present in this contract.

RentFoundation

5. Whitepaper says that the validator commission begins at 1% however the state variable in begins at 0.25%. These values
should be consistent.

validatorCommission KeyProtocolVariables

6. Consider using the to document all functions. The current code contains very few comments and would greatly benefit from better documentation.NatSpec format

Adherence to Best Practices

1. All internal functions should begin with an underscore. This is inconsistent throughout the code and the following functions should be changed:

xToken.calculateYield()•

xToken.calculateTotalYield()•

xToken.feeDistributor()•

rentFoundation.feeDistributor()•

xBasket.convertToXToken•

rentFoundation.feeDistributor()•

LNDX.rewardsToDistribute()•

LNDX.calculateEndDate()•

LNDX.calculateGrantClaim()•

2. and should follow the same camel-casing used in other file names. Additionally, interfaces should follow this same naming convention.rentFoundation.sol nft.sol

3. should have a more descriptive name as it is the LandXNFT.nft.sol

4. Both the and variable names in contain typos.landXOpertationsPercentage lndxHoldersPercentage KeyProtocolVariables

5. Contracts should adhere to the following order when declaring members. This is inconsistently followed throughout the codebase:

1. Type declarations

2. State variables

3. Events

4. Modifiers

5. Functions

6. The parameter in the constructor for contains a typo and should be renamed to ._keyProtokolValues RentFoundation _keyProtocolValues

7. L150 in should rename the instance variable from to .rentFoundation.sol cellTokenFee sellTokenFee

8. Assigning the state variable to 0 when it is declared is redundant, as the default value will be 0.LNDX.stakesCount:

9. There is no need to assign the state variable in as it is assigned in the constructor. As it can only be assigned in the constructor, it should be marked as
.

crop cToken

immutable

10. Events are improperly emitted throughout the contracts. For example, events should be emitted throughout the setters in .KeyProtocolVariables

11. The constructor in contains a typo. should read .cToken _rentForndation _rentFoundation

12. is redundant since it is only ever 0 or 1 and used to check whether an ID has already been initialized. The mapping can be used
for checking that as well.
LandXNFT.totalSupply initialOwner

13. calls with the last argument set to . Since this appears to be unused, it can be replaced by an
empty string to save some gas.
LandXNFT.setDetailsAndMint() _mint(..., "0x0000") data "0x0000"

""

14. and should be declared as constants.OracleMulti.fee OracleMulti.jobId

15. In the contract, consider using an immutable storage variable for the request URI and other hardcoded addresses to allow using the same code for tests
and deployments.

OracleMulti

16. In the contract, consider refactoring the functions into a single function that accepts a string and a function selector.OracleMulti request*

17. Consider renaming the parameter of the to something more specific such as ._address OraclePrices.constructor() admin

18. The variable uses a hardcoded address with a comment "to be changed for mainnet". Consider using an immutable variable instead to allow using
the same code for tests and deployments.

OraclePrices.usdc

19. calls . This should be replaced by , since an earlier require statement enforces that the
return value must be equal to the current contract's address.
xToken.getShards()#L186 xTokenRouter.getXToken(crop) address(this)

https://docs.soliditylang.org/en/v0.8.17/natspec-format.html

20. Consider replacing the four division operations in the function by a single one to save gas.xBasket.calculateCollateral()

21. In the contract, consider declaring the variable and as immutable.RentFoundation usdc lndx

22. Create interfaces in their own files and import them wherever needed.

23. : Set the DAO as the owner and use the modifier. The contract is currently but the modifier is never used.KeyProtocolVariables.sol onlyOwner Ownable onlyOwner

24. : Set , , and in the constructor to avoid making calls before the addresses are set.RentFoundation.sol grainPrices landXNFT xTokenRouter

25. In the function , the assignment of the variable could be optimized by replacing it with the following code:LNDX.grantLNDX() coefficient

uint8 coefficient;
if (totalPeriod >= 48) {

coefficient = coefficients[StakePeriods.MONTHS_48];
}
else if (totalPeriod >= 12) {

coefficient = coefficients[StakePeriods.MONTHS_12];
} else {

coefficient = coefficients[StakePeriods.MONTHS_3];
}

Test Results

Test Suite Results

The test suite was executed by running .npm run test

cToken

✓ check symbol value

✓ owner can't renounceOwnership

mint 1000000 cCORN for 0xBC7B3321581341c91548286CE26B840b0cA55110
✓ minting works (101ms)

try to mint 1000000 cCORN for 0xBC7B3321581341c91548286CE26B840b0cA55110 when caller is not xCORN contract
✓ minting doesn't work (79ms)

get decimal parameter for cToken, it should be equal 6
✓ get decimals works

updates xTokenRouter contract by contract owner
✓ set XTokenRouter (67ms)

try to update xTokenRouter contract by NOT contract owner
✓ it is not possible to set XTokenRouter (not owner contract) (51ms)

✓ it is not possible to set XTokenRouter (zero address)

updates RentFoundationcontract by contract owner
✓ set RentFoundation contract (60ms)

try to update RentFoundation contract by NOT contract owner
✓ it is not possible to set RentFoundation contract (not owner contract) (52ms)

✓ it is not possible to set RentFoundation contract (zero address)

0xBC7B3321581341c91548286CE26B840b0cA55110has 1000000 cCORN and burns 500000, final his balance should be equal 50000
✓ burn works (205ms)

0xBC7B3321581341c91548286CE26B840b0cA55110has 1000000 cCORN and burns 500000, for some reason they can't be converted to USDC, final his balance should be equal 1000000
✓ burn doesn't work impossible to exchange CTokens (98ms)

0xBC7B3321581341c91548286CE26B840b0cA55110has 1000000 cCORN and burns 2000000, so transaction should be reverted
✓ burn doesn't work impossible to exchange CTokens (not enaugh balance) (98ms)

Key Protocol Values

updates xToken mint fee
✓ updateXTokenMintFee works

try to update xToken mint fee when it is not allowed
✓ updateXTokenMintFee doesn't work (not dao)

✓ updateXTokenMintFee doesn't work (unsuitable value)

updates cToken sell fee
✓ updateCTokenSellFee works

try to update cToken sell fee when it is not allowed
✓ updateCTokenSellFee doesn't work (not dao)

✓ updateCTokenSellFee doesn't work (unsuitable value)

updates pay rent fee
✓ updatePayRentFee works

try to update pay rent fee when it is not allowed
✓ updatePayRentFee doesn't work (not dao)

✓ updatePayRentFee doesn't work (unsuitable value)

updates pay rent fee
✓ updateSellXTokenSlippage works

try to update pay rent fee when it is not allowed
✓ updateSellXTokenSlippage doesn't work (not dao)

✓ updateSellXTokenSlippage doesn't work (unsuitable value)

updates pay rent fee
✓ updateBuyXTokenSlippage works

try to update pay rent fee when it is not allowed
✓ updateBuyXTokenSlippage doesn't work (not dao)

✓ updateBuyXTokenSlippage doesn't work (unsuitable value)

updates hedge fund allocation percentage to 10%
✓ updateHedgeFundAllocation works

try to update hedge fund allocation percentage when it is not allowed
✓ updateHedgeFundAllocation doesn't work (not dao)

✓ updateHedgeFundAllocation doesn't work (unsuitable value)

updates size of security deposit
✓ updateSecurityDepositMonths works

try to update size of security deposit when it is not allowed
✓ updateSecurityDepositMonths doesn't work (not dao)

updates fee distribution precentages
✓ updateFeeDistributionPercentage works (47ms)

try to update fee distribution precentages when it is not allowed
✓ updateFeeDistributionPercentage doesn't work (not dao)

try to update fee distribution precentages when their sum is greater then 100%
✓ updateFeeDistributionPercentage doesn't work (inconsistent values)

updates hedge fund wallet
✓ updateHedgeFundWallet works

try to update hedge fund wallet when it is not allowed
✓ updateHedgeFundWallet doesn't work (not dao)

✓ updateHedgeFundWallet doesn't work (zero address)

updates landx operational wallet
✓ updateLandxOperationalWallet works

try to update landx operational wallet when it is not allowed
✓ updateLandxOperationalWallet doesn't work (not dao)

✓ updateLandxOperationalWallet doesn't work (zero address)

updates landx choice wallet
✓ updateLandxChoiceWallet works

try to update landx choice wallet when it is not allowed
✓ updateLandxChoiceWallet doesn't work (not dao)

✓ updateLandxChoiceWallet doesn't work (zero address)

updates xToken security wallet
✓ updateXTokensSecurityWallet works

try to update xToken security wallet when it is not allowed
✓ updateXTokensSecurityWallet doesn't work (not dao)

✓ updateXTokensSecurityWallet doesn't work (zero address)

updates validator's commission wallet
✓ updateValidatorCommisionWallet works

try to update validator's commission wallet when it is not allowed
✓ updateValidatorCommisionWallet doesn't work (not dao)

✓ updateValidatorCommisionWallet doesn't work (zero address)

updates max validator fee
✓ updateMaxValidatorFee works

try to updates max validator fee when it is not allowed
✓ updateMaxValidatorFee doesn't work (not dao)

✓ updateMaxValidatorFee doesn't work (unsuitable value)

update validator commision fee
✓ update validator commision fee works

try to update validator commision fee when it is not allowed
✓ update validator commision fee doesn't work (not dao)

✓ update validator commision fee doesn't work (unsuitable value)

disable pre launch mode
✓ launch works

try to disable pre launch mode when it is not allowed
✓ launch doesn't work (not dao)

LNDX
✓ Grant LNDX with cliff=0 and vesting=0 (38ms)
✓ Impossible create second grant for the same address (45ms)
✓ Impossible create grant with cliff more then 60 months
✓ Impossible create grant with vesting duration more then 60 months
✓ Impossible create grant with vesting duration more then 60 months
✓ Impossible to mint more than 64400000 LNDX
✓ Only Owner can create grant
✓ Grant LNDX with cliff=2 and vesting=5, total lock < 12 months (92ms)
✓ Grant LNDX with cliff=1 and vesting=24, 12 months <= total lock < 48 months (91ms)
✓ Grant LNDX with cliff=12 and vesting=36, total lock >= 48 months (93ms)
✓ Grant LNDX with cliff=12 and vesting=36, total lock >= 48 months (91ms)
✓ Reward distribution first call (69ms)
✓ Reward distribution first call, veLNDX totalSupply = 0 (111ms)
✓ Reward distribution second call after two days (123ms)
✓ Impossible to mint rewards more then 15 600 000 (169ms)
✓ Impossible to mint rewards when all rewards already minted (161ms)
✓ impossible claim when cliff is not over (120ms)
✓ Partial Claim grant (197ms)
✓ Full Claim grant (282ms)
✓ Try to claim totally claimed grant (256ms)
✓ stake, wrong period (51ms)
✓ stake (180ms)
✓ Unstake impossible, stake period is not finished (182ms)
✓ Unstake impossible, caller is not staker (187ms)
✓ Unstake (390ms)
✓ Unstake (362ms)
✓ Unstake Preview (388ms)
✓ Unstake Preview (332ms)
✓ Unstake impossible, already unstaked (389ms)
✓ Unable to distribute fee, caller has no role granted (85ms)
✓ owner can't renounceOwnership
✓ get decimals works

NFT

Minting nft for 0xBC7B3321581341c91548286CE26B840b0cA55110 with parameters
✓ minting works (151ms)

try to mint NFT with id=1, but token with ID=1 already exists
✓ minting doesn't work because token exists (114ms)

try to mint NFT with id=1, but token with ID=1 already exists
✓ minting doesn't work because two high validator's fee (124ms)

try to mint NFT but there is no xToken contract for provided crop type
✓ minting doesn't work because xToken is not exists(not set) (137ms)

NFT owner burns his NFT
✓ burning NFT works for NFT owner (149ms)

not NFT owner burns the NFT of other owner if he has allowance
✓ burning NFT works for not owner when it approved (171ms)

not NFT owner try to burn the NFT, transaction should be reverted
✓ burning NFT doesn't work for not owner (113ms)

set token URI by contract owner
✓ set base token URI works

set token URI by not contract owner, transaction should be reverted
✓ set base token URI doesn't work

✓ set base token URI doesn't work, empty string

updates xTokenRouter contract by contract owner
✓ set xTokenRouter works

try to update xTokenRouter contract by NOT contract owner
✓ set xTokenRouter doesn't work

✓ set xTokenRouter doesn't work, zero address is not allowed

returns uri for NFT token by token ID
✓ get uri (38ms)

try to get uri for NFT token by token ID that has no valid type(35h), should be reverted
✓ get uri doesn't work

Oracle Prices

set price=500000000 (USDC per megatone) for SOY
✓ setGrainPrice works (40ms)

try to set price for SOY by address with no PRICE_SETTER role
✓ setGrainPrice doesn't work (has no role)

try to set TOO HIGH price for SOY
✓ setGrainPrice doesn't work (invalid value)

set price=6000000 (USDC per megatone) for xToken
✓ setXTokenPrice works

try to set price for xToken by address with no PRICE_SETTER role
✓ setXTokenPricee doesn't work (has no role)

try to set TOO HIGH price for xToken
✓ setXTokenPrice doesn't work (invalid value)

✓ setXTokenPrice doesn't work, zero address (54ms)

get xToken price when prelaunch mode is enabled
✓ get xToken price (prelauch is true) (52ms)

try to get xToken price when pre launch mode is disabled and uniswap pool is not found; in this case transaction is reverted
✓ get xToken price (prelauch is false, pool not found) (264ms)

get xToken price when prelaunch mode is disabled, uniswap pool exists and token0 is USDC
✓ get xToken price (prelauch is false, pool exists, token0 is usdc) (280ms)

get xToken price when prelaunch mode is disabled, uniswap pool exists and token0 is xToken
✓ get xToken price (prelauch is false, pool exists, token0 is xToken) (281ms)

returns xToken/USDC uniswap pool address
✓ get xToken pool (151ms)

RentFoundation

✓ owner can't renounceOwnership

updates NFT contract by contract owner
✓ set NFT Contract (103ms)

try to update NFT contract by NOT contract owner
✓ impossible set NFT Contract (55ms)

✓ impossible set NFT Contract, zero address

updates xTokenRouter contract by contract owner
✓ set XTokenRouter (59ms)

try to update xTokenRouter contract by NOT contract owner
✓ impossible to set XTokenRouter (52ms)

✓ impossible to set xTokenRouter, zero address

updates OraclePrice contract by contract owner
✓ set OraclePrices contract (60ms)

try to update OraclePrice contract by NOT contract owner
✓ it is not possible to set OraclePrices contract (not owner contract) (53ms)

✓ it is not possible to set OraclePrices contract, zero address

pay initial rent for NFT with ID=1
✓ pay initial rent (128ms)

try to pay initial rent for NFT with ID=1 by not initial payer, only xToken contract can pay initial rent
✓ pay initial rent, not initial payer (114ms)

try to pay initial rent for NFT with ID=1 but initial rent was already applied, initial rent can be paid once
✓ pay initial rent, initial rent is applied before (364ms)

try to pay rent for NFT with ID=1 but initial rent was not applied, it is impossible to pay rent for NFT that was not converted to xTokens
✓ pay rent, initial rent was not applied

try to pay 1000000 USDC of rent for NFT with ID=1 but account has not enaough of USDC
✓ pay rent, not enough USDC to transfer (276ms)

pay 1000000 USDC of rent for NFT with ID=1
✓ pay rent (1050ms)

✓ pay rent, security deposit (1154ms)

✓ impossible pay rent, security deposit (1137ms)

✓ Buy Out reverts (1206ms)

✓ Buy Out, reverts not initial payer (163ms)

✓ Buy Out, reverts not initial rent applied (68ms)

✓ Buy Out (1253ms)

✓ Buy Out Preview, reverts not initial payer (143ms)

✓ Buy Out, reverts not initial rent applied (64ms)

✓ Buy Out Preview (1181ms)

✓ Buy Out Preview (1217ms)

get deposit amount for NFT with ID=1:, it become less each second: start deposit is 81000, after 100000 seconds it becomes 80744
✓ get deposit balance (221ms)

get deposit amount for NFT with ID=1:, it become less each second: can be negative, start deposit is 81000, after 32336000 seconds it becomes -2051
✓ get deposit balance, negative value if there wasn't payments (257ms)

✓ sell cTokens (833ms)

✓ can't sell cTokens, no valid cToken (224ms)

xBasket
✓ owner can't renounceOwnership
✓ get decimals works
✓ Asset
✓ convert to shares, total supply 0 (50ms)
✓ convert to assets, total supply 0 (51ms)
✓ deposit, total supply 0 (1010ms)
✓ deposit, total supply > 0 (1108ms)
✓ deposit, total supply > 0, not enough assets (1020ms)

✓ mint, total supply 0 (1050ms)
✓ mint, total supply > 0 (2033ms)
✓ mint, total supply > 0, not enough fund (1202ms)
✓ withdraw (4224ms)
✓ get xBasket price (1913ms)
✓ redeem (4212ms)
✓ can't redeem, ERC4626: redeem more than max (4002ms)
✓ get total assets (1617ms)

xToken
✓ check symbol value
✓ owner can't renounceOwnership
✓ Get Shards works (preLaunch mode is enabled) (751ms)
✓ Get Shards works (preLaunch mode is disabled) (1769ms)
✓ impossible to get Shards (not initial owner) (1141ms)
✓ impossible to get Shards (nft has no land area) (75ms)
✓ impossible to get Shards (nft has no rent) (67ms)
✓ impossible to get Shards (unsupported grain) (154ms)
✓ impossible to get Shards (wrong xToken contract) (110ms)
✓ impossible to get Shards (not token owner) (259ms)
✓ impossible to get Shards (rent already applied) (1095ms)
✓ Get NFT back (1204ms)
✓ Get NFT back, security deposit is applied (1134ms)
✓ Get NFT back, remaining rent is 0 (1108ms)
✓ Cant' get NFT back, there is a debt (990ms)
✓ Get NFT back Preview (946ms)
✓ Get NFT back Preview, security deposit applied (905ms)
✓ Get NFT back Preview, there is a debt (802ms)
✓ Can't get NFT back (not owner) (797ms)
✓ Stake works (787ms)
✓ Preview not distributed yield (808ms)
✓ Get not distributed yield reverted
✓ Additional Stake works (821ms)
✓ Stake doesn't work (not enough funds) (88ms)
✓ Unstake works (996ms)
✓ get decimals works
✓ set XTokenRouter (81ms)
✓ impossible to set XTokenRouter (75ms)
✓ impossible to set XTokenRouter, zero address
✓ set XBasketAddress (79ms)
✓ impossible to set XBasketAddress (75ms)
✓ impossible to set XBasketAddresst, zero address
✓ preview (425ms)
✓ preview reverted (55ms)
✓ preview reverted (54ms)
✓ preview reverted (140ms)
✓ preview reverted (101ms)
✓ XBasket Transfer (720ms)
✓ XBasket Transfer not allowed (752ms)

xTokenRouter
✓ owner can't renounceOwnership
✓ Set Tokens works (39ms)
✓ not owner can't set Tokens
✓ owner can't set Tokens with zero adress
✓ owner can't set Tokens with zero adress
✓ get cToken

210 passing (3m)

Code Coverage

The code coverage was gathered by running . The code coverage is strong overall, with room for improvement for .npm run test RentFoundation.sol

The following files were not instrumented for coverage, and thus their coverage cannot be assessed:

• LNDXGovernor.sol

• OracleMulti.sol

• usdc.sol

• veLNDX.sol

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 95.61 83.96 95.49 95.19

KeyProtocolVariables.sol 100 92.86 100 100

LNDX.sol 97.56 84.62 100 94.94 … 397,398,457

LandXNFT.sol 91.67 95 85.71 96.3 100

OraclePrices.sol 100 86.36 100 100

RentFoundation.sol 79.45 75 70.59 80.41 … 232,236,240

cToken.sol 100 81.25 100 100

xBasket.sol 98.7 67.86 100 98.33 283,315,409

xToken.sol 97.1 84.72 100 97.16 … 482,483,484

xTokenRouter.sol 100 87.5 100 100

All files 95.61 83.96 95.49 95.19

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

13715e36515dcf52b695a58d8ccd74605288337c2d59f035873748abf18ec2b7 ./contracts/xBasket.sol

850b5d6fd6b5fa551b48174bab7b100ae0c984260fef07fcf2a9d5b165d3019e ./contracts/LNDX.sol

5eca6f74c6458875b6d6435f246e7f4185cc1d6e610a59ea9fe8e65d7587d6bf ./contracts/veLNDX.sol

91429a7bb02ddc64d6300b8d67df724c30ed5e66883bebb7e2ec22f21a9e15a7 ./contracts/OraclePrices.sol

7ba9a2496fc63c4f3a135464d7830b8f4e222f947fc0c29c6c5117e786c995a7 ./contracts/cToken.sol

74db4948c161fadec8f4b2a5b12fb3eabad3c0dc744886e258df9c4519d9a5ef ./contracts/rentFoundation.sol

b1bb00a7df4c67bde61eab411ce89fbe2955b0f38852634efe37a8724b438059 ./contracts/usdc.sol

c26a9022d7b218c8f6f3c84ffb59085722e764b8c947db27c61efee9c5f1b57d ./contracts/OracleMulti.sol

cb78d2e2d81fcc181fd44478e1cd76454b20818bcd9e42afc6d597a4adab96e7 ./contracts/nft.sol

e6cd6db01e2ef414289713e21d53dea84e4ae11dfb7a131c3bcde15f715acf05 ./contracts/KeyProtocolVariables.sol

94b7ae16a90a194dc082a0b2289e36f5dd9919e55ecae5dbe50afcfad2323041 ./contracts/LNDXGovernor.sol

030375d67fcbe2cb01d33ca5a398c9cfe8d403e0282531f21384b47d950a0b0e ./contracts/xToken.sol

b4fd960deede8265fda239a8e80c8ea806015f600f9bb7d45a382b19ff2cf7df ./contracts/xTokenRouter.sol

Tests

8afed033b44f5d3f76b891d5071c20d122492598f6cdf9f3dab5657e47b0230d ./test/xtoken_test.js

965da23fae35a517c5b7eaf1daa81f4548fac7b042105cc4639b1e852e950e3a ./test/xBasket_test.js

abfc188691e86275e5b7e184bd551ec5cb5145a48c27d17919338cdd40a45052 ./test/oraclePrices_test.js

7836cbb71ef3d8ef93125c7dc9555d50ad1287d663dc465f6f1180d1748ddc8b ./test/nft_test.js

edffedba6e4cbfccfc3d472c9cb18cdd2528d1a5d7a4dca40edd1b70aabb2cc2 ./test/xTokenRouter_test.js

492441d6e6fed129cc0003c7a7f4fa6dee6c8f8ac92534d7158c79de99ed318e ./test/ctoken_test.js

87b15678f65ebe1bd6a17150693d13baae1e6e0b7727ea7b99178737ad87ef21 ./test/keyProtocolValues_test.js

da53e9b232cf1bf0f16265426fe65ff805f4660b26e2876a15e451d91596b872 ./test/rentFoundation_test.js

Changelog

2022-11-10 - Initial report•

2023-01-20 - Fix Review•

About Quantstamp

Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3 through its best-in-class

Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and the Ethereum Foundation.

Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in formal verification, static analysis, blockchain audits,

penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has worked with a diverse range of

customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked with include Ethereum 2.0, Binance, Visa, PayPal, Polygon,

Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to work with some of the top

names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:

Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos•

DeFi: Curve, Compound, Aave, Maker, Lido, Polygon, Arbitrum, SushiSwap•

NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora•

Academic institutions: National University of Singapore, MIT•

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication or other making available of the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such web sites&aspo; owners. You agree that Quantstamp are not responsible for the content or operation of

such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as described below, a hyperlink

from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or operations of that site. You are

solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no

responsibility for the use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any

output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp disclaims all warranties, expressed

or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement. You agree that your access and/or use of the report and other results of the review, including but

not limited to any associated services, products, protocols, platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS

CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation provided for a limited review at

the time provided. You acknowledge that Blockchain technology remains under development and is subject to unknown risks and flaws and, as such, the report may not be

complete or inclusive of all vulnerabilities. The review is limited to the materials identified in the report and does not extend to the compiler layer, or any other areas beyond

the programming language, or other programming aspects that could present security risks. The report does not indicate the endorsement by Quantstamp of any

particular project or team, nor guarantee its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the

purpose of making any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information linked to, called by,

referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any other websites or mobile applications,

and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third party. As with the purchase or use of a product or

service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.

LandX Finance Audit

