
November 26th 2020 — Quantstamp Verified

Idle Governance
This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Yield Farming and Goverance

Auditors Poming Lee, Research Engineer
Kevin Feng, Blockchain Researcher
Ed Zulkoski, Senior Security Engineer

Timeline 2020-10-12 through 2020-10-26

EVM Muir Glacier

Languages Solidity, Javascript

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification README.md
https://developers.idle.finance/

Source Code
Repository Commit

idle-governance 91588bb

idle-governance c2f5f04

Goals Do functions have proper access control
logic?

•

Are there centralized components of the
system which users should be aware?

•

Do the contracts adhere to best practices?•

Total Issues 8 (6 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 2 (1 Resolved)

Informational Risk Issues 4 (3 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice (e.g.,
gas analysis, deployment settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/Idle-Labs/idle-governance/blob/develop/README.md
https://developers.idle.finance/
https://github.com/Idle-Labs/idle-governance/commit/91588bb856c3a5ad986c6870995dc12171fee908
https://github.com/Idle-Labs/idle-governance/commit/91588bb856c3a5ad986c6870995dc12171fee908
https://github.com/Idle-Labs/idle-governance/commit/c2f5f043a86af5f0a7d57d179ca32e7e7e881152
https://github.com/Idle-Labs/idle-governance/commit/c2f5f043a86af5f0a7d57d179ca32e7e7e881152

Summary of Findings

During auditing, we found eight potential issues of various levels of severity: one medium-severity issue, two low-severity issues, four informational-level findings, and one undermined
finding. We also made five best practices recommendations.

: Please be aware that Quantstamp was requested and had audited these files: , , and ; the whole system was not
audited by us.
Disclaimer PriceOracle.sol Idle.sol IdleController.sol

: All findings were either fixed or acknowledged.update-2020-10-26

ID Description Severity Status

QSP-1 Unintended Revert in Function claimIdle Medium Fixed

QSP-2 Gas Usage / Loop Concernsfor Low Acknowledged

QSP-3 May Not Behave Correctly After Token Transfers_moveDelegates() Low Fixed

QSP-4 Missing Address Sanitization Informational Fixed

QSP-5 Privileged Roles Informational Acknowledged

QSP-6 Should Validate the and ParametersdelegateBySig() v s Informational Fixed

QSP-7 Possible Truncation in Calculating APR Precision Informational Fixed

QSP-8 Integer Overflow / Underflow Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v5.1.33• Truffle

v0.7.11• SolidityCoverage

v0.22.10• Mythril

v0.6.12• Slither

https://truffleframework.com/
https://github.com/sc-forks/solidity-coverage
https://github.com/ConsenSys/mythril
https://github.com/crytic/slither

Steps taken to run the tools:

1. Installed Truffle: npm install -g truffle

2. Installed the solidity-coverage tool (within the project's root directory): npm install --save-dev solidity-coverage

3. Ran the coverage tool from the project's root directory: ./node_modules/.bin/solidity-coverage

4. Installed the Mythril tool from Pypi: pip3 install mythril

5. Ran the Mythril tool on each contract: myth a path/to/contract

6. Installed the Slither tool: pip install slither-analyzer

7. Run Slither from the project directory: sslither .

Findings

QSP-1 Unintended Revert in Function claimIdle

Severity: Medium Risk

FixedStatus:

In , the function will loop through all the combinations of and and pass into the function
. However, in the function on will revert all the transactions that pass in any .

Description: contracts\IdleController.sol claimIdle holders idleTokens
distributeIdle distributeIdle L119 supplier != idleToken

Remove the inner for loop in the function , or remove directly. The way of fixing this issue should be done based on the functionality that the idle team
actually seeks to achieve.
Recommendation: claimIdle L119

QSP-2 Gas Usage / Loop Concernsfor

Severity: Low Risk

AcknowledgedStatus:

Gas usage is a main concern for smart contract developers and users, since high gas costs may prevent users from wanting to use the smart contract. Even worse, some gas usage
issues may prevent the contract from providing services entirely. For example, if a loop requires too much gas to exit, then it may prevent the contract from functioning correctly entirely. It
is best to break such loops into individual functions as possible.

Description:
for

In particular, for , if many markets are added, may run into issues.contracts/IdleController.sol refreshIdleSpeedsInternal()
: Idle Team added a method which should completely remove all markets in case of emergency. Gas analysis was also conducted successfully.update-2020-10-26 _resetMarkets

We recommend 1) performing gas analysis to ensure that each loop-function will not run into gas limitations, particularly for large inputs, and 2) adding a function that can
reduce the number of markets in the for emergency use.
Recommendation:

allMarkets

QSP-3 May Not Behave Correctly After Token Transfers_moveDelegates()

Severity: Low Risk

FixedStatus:

In , The function invokes with the delegator's full balance instead of remaining undelegated balance. This can cause
users to lose delegation ability if additional Idle tokens are acquired without minting (i.e., via transfers).
Description: contracts\Idle.sol _delegate() _moveDelegates()

Consider the following scenario:

1. Alice has Idle , which is delegated to Bob.10

2. Alice acquires additional Idle from a transfer.1

3. If Alice attempts to re-delegate her Idle tokens to Carol, it will fail due to the check on ; effectively, the function will attempt to undelegate tokens
from Bob instead of , and revert.

11 SafeMath L195 11
10

In general, if Alice's balance is ever more than the number of tokens minted toward her account (due to transfers), she will not be able to delegate. This can be mitigated by Alice by simply
transferring the excess tokens out of her account, however this scenario may not be clear to end-users from a UX-perspective.

It is not clear if this functionality is as intended. If so, no changes are needed, but user documentation should exist describing the scenario above. If the scenario above is
undesirable, should be invoked in as well. Note however that with this approach, votes can be more easily "bought" by acquiring Idle tokens on exchanges.
Recommendation:

_moveDelegates() _transfer()

QSP-4 Missing Address Sanitization

Severity: Informational

FixedStatus:

For , the values inside the input parameter is not checked to be different from inside the function.Description: contracts\IdleController.sol priceOracle_ 0x0 _setPriceOracle

Add a statement that checks that the value of the is different from .Recommendation: require priceOracle_ 0x0

QSP-5 Privileged Roles

Severity: Informational

AcknowledgedStatus:

(a) For , a potentially malicious owner (if the private key was leaked) can change the feed contract addresses/block length to give incorrect price
oracles that can affect the token. While privileged roles for the Idle token are addressed in https://developers.idle.finance/advanced/admin-powers, it is not addressed for the price oracle. (b) For

, the admin can manipulate the rate of tokens in which each market receives by adding/removing idle markets to the list.

Description: contracts\PriceOracle.sol

contracts/IdleController.sol
: Idle Team stated that the owner of the and the contracts will be the Timelock contract (i.e., the governance itself) directly on

deploy.
update-2020-10-26 PriceOracle.sol IdleController.sol

These privileged operations and their potential consequences should be clearly communicated to (non-technical) end-users via publicly available documentation.Recommendation:

QSP-6 Should Validate the and ParametersdelegateBySig() v s

Severity: Informational

FixedStatus:

For , should validate the and parameters as in (See: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/2bb06b1af4d57cf47c700992b327a08bebf64879/contracts/cryptography/ECDSA.sol#L46).
Description: contracts\Idle.sol delegateBySig() v s ECDSA.sol

QSP-7 Possible Truncation in Calculating APR Precision

Severity: Informational

FixedStatus:

For , in function , the computed pair will always return a result that has the last two digits as , in due to division before
multiplication .
Description: contracts/PriceOracle.sol getCompApr 0 L58

div(cTokenNAV).mul(100)

If it is not intended for the last two digits to be , then it is recommended to perform instead for a more precise calculation.Recommendation: 0 mul(100).div(cTokenNAV)

QSP-8 Integer Overflow / Underflow

Severity: Undetermined

FixedStatus:

Integer overflow/underflow occur when an integer hits its bit-size limit. Every integer has a set range; when that range is passed, the value loops back around. A clock is a good
analogy: at 11:59, the minute hand goes to 0, not 60, because 59 is the largest possible minute. Integer overflow and underflow may cause many unexpected kinds of behavior and was the core
reason for the attack. Here's an example with variables, meaning unsigned integers with a range of .

Description:

batchOverflow uint8 0..255 function under_over_flow() public { uint8
num_players = 0; num_players = num_players - 1; // 0 - 1 now equals 255! if (num_players == 255) { emit LogUnderflow(); // underflow occurred
} uint8 jackpot = 255; jackpot = jackpot + 1; // 255 + 1 now equals 0! if (jackpot == 0) { emit LogOverflow(); // overflow occurred } }
In particular, for , there is a potential underflow on : . It is recommended to use for this operation.contracts\PriceOracle.sol L70 ... 10**(18-tokenDecimals) ... SafeMath

Automated Analyses

Mythril

Mythril reported no issues.

Slither

Slither warns of several potential reentrancy issues, however as the associated external calls were to trusted contracts (either Idle contracts or underlying protocols),
we classified these as false positives.

•

Slither detects that there are "divided-before-multiplies" operations in of as mentioned in our Finding section. Re-ordering these
operations may improve precision.

• L58 contracts\PriceOracle.sol

Slither detects that in is never initialized as mentioned in our Best Practice section.• comptrollerImplementation contracts\IdleControllerStorage.sol

Adherence to Specification

The code adheres to the specification provided, as well as the inline documentation.

Code Documentation

The code is generally well-documented. We suggest several improvements:

[false-positive] For , in (and possibly also), the documentation says to but instead multiplies by• contracts\PriceOracle.sol L64 L67 scale it to 1e18 10e10

For , the constant in is not documented.• contracts\PriceOracle.sol 100 L58

Consider adding code comments to the functions that currently are not commented, to increase the maintainability of the code.•

Adherence to Best Practices

The code does not fully adhere to best practices. In particular:

For , consider using constants for the key part of the assignment for ~ and ~ like what is done in and , in order
to make the code more readable.

• contracts\PriceOracle.sol L28 L29 L32 L37 L26 L27

[false-positive] in , was never set.• L48 contracts\IdleController.sol comptrollerImplementation

For , the ChainLink price feeds are hardcoded in the constructor, for better coding practices it is better to pass this in as an
during the deployment of the contract.

• contracts\PriceOracle.sol initial
value

For , should use instead of .• contracts\Idle.sol uint256 uint

[false-positive] For , Comp has the public convenience function which claims for all markets. Is
there a reason this was omitted?

• contracts\IdleController.sol claimComp(address holder)

Test Results

Test Suite Results

All tests have passed.

Compiling your contracts...
===========================
> Everything is up to date, there is nothing to compile.

Contract: EarlyRewards
✓ set params on constructor (74ms)
✓ allows onlyOwner to setRewards (103ms)
✓ setRewards reverts if params have different length
✓ setRewards reverts if canSetReward is false (64ms)
✓ recipient can claim (104ms)
✓ claim reverts if msg.sender is not authorized (108ms)
✓ emergencyWithdrawal can only be called by owner can claim
✓ emergencyWithdrawal can be called by owner for any non IDLE token (75ms)
✓ emergencyWithdrawal can be called by owner for IDLE token with any address but fund goes to ecosystem (76ms)

Contract: IdleController
✓ refreshIdleSpeeds with IDLE equally splitted (150ms)
✓ refreshIdleSpeeds with different supply (256ms)
✓ refreshIdleSpeeds with different price (240ms)
✓ refreshIdleSpeeds with different aprs (239ms)
✓ refreshIdleSpeeds with different asset prices (287ms)
✓ refreshIdleSpeeds with tokens with different decimals (308ms)
✓ _resetMarkets (269ms)

Contract: PriceOracle
✓ allows onlyOwner to setBlocksPerYear (62ms)
✓ allows onlyOwner to updateFeedETH (63ms)
✓ allows onlyOwner to updateFeedETH (61ms)
✓ getPriceUSD when there no price feed
✓ getPriceUSD when there is USD price feed (64ms)
✓ getPriceUSD when there no USD price feed but ETH price feed is present (72ms)
✓ getPriceETH when there no price feed
✓ getPriceETH when there is ETH price feed (40ms)
✓ getPriceToken when there no price feed for asset
✓ getPriceToken when there no price feed for token
✓ getPriceToken when there are both price feeds (103ms)
✓ getUnderlyingPrice (41ms)
✓ getCompApr (88ms)

29 passing (18s)

Code Coverage

The branch, statement and function coverage of and are low. This indicates that much of the functionality of the

protocol is not executed during tests. We strongly recommend that the branch coverage be brought to 100% as it is crucial to execute all functionality in order to verify that

no functional bugs exist in the code.

contracts\Idle.sol contracts\IdleController.sol

: Idle Team states that they have added only tests for differences with respect to the audited version of the code of Compound. They is why for

and tests, given that they had the majority of the code copied from Compound, don't have that much coverage.

update-2020-10-26

Idle.sol IdleController.sol

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 27.18 15.2 29.25 27.47

ERC20Permit.sol 0 0 0 0 … 63,67,68,70

EarlyRewards.sol 100 83.33 100 100

EcosystemFund.sol 0 100 0 0 11

GovernorAlpha.sol 0 0 0 0 … 323,324,325

Idle.sol 0 0 0 0 … 267,271,272

IdleController.sol 66.94 37.04 70 66.94 … 273,274,310

IdleControllerStorage.sol 100 100 100 100

PriceOracle.sol 100 100 100 100

Reservoir.sol 0 0 0 0 … 90,94,95,97

Timelock.sol 0 0 0 0 … 108,110,115

Unitroller.sol 0 0 0 0 … 126,136,138

Vester.sol 0 0 0 0 … 53,55,60,62

VesterFactory.sol 0 0 0 0 … 50,51,53,57

contracts/interfaces/ 100 100 100 100

CERC20.sol 100 100 100 100

ChainLinkOracle.sol 100 100 100 100

Comptroller.sol 100 100 100 100

IdleToken.sol 100 100 100 100

contracts/lib/ 18.75 12 26 18.75

CarefulMath.sol 0 0 0 0 … 77,79,80,83

Exponential.sol 22.83 15.79 28.89 22.83 … 331,335,348

contracts/mocks/ 90.48 100 90 90.48

CERC20Mock.sol 71.43 100 60 71.43 18,21

ChainLinkOracleMock.sol 100 100 100 100

ComptrollerMock.sol 100 100 100 100

IdleTokenMock.sol 100 100 100 100

PriceOracleMock.sol 100 100 100 100

Token8Mock.sol 100 100 100 100

TokenMock.sol 100 100 100 100

All files 27.79 14.67 35.23 28.03

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

22f1b43d3d1a61e7a4435ab0d7b9ad79200500a5489d92a4b5ff397ba1712e07 ./contracts/EarlyRewards.sol

98e2c874a8edcd58e3767a371b008e159a44940431fe0a7942e38388ba4efd36 ./contracts/EcosystemFund.sol

252882099f640ca0a522cf0ee298cdc2f299fd04859c4c1dd36633cd8db5b693 ./contracts/ERC20Permit.sol

7aecd1127ea8f5f4d8f48eb80a2745b9f47069a3eb84d860f9957e6529cdb413 ./contracts/GovernorAlpha.sol

bf7254423db86002329365c59fcfa08b80a42ab00d30049a86adbecfcc0bf71f ./contracts/Idle.sol

69353b0ff3ec9da8c5982ff28673975022e1d6fb23176cf1a5146eb4d65a9156 ./contracts/IdleController.sol

cf1bb5be11d6dbd7e6882fe2e8e039decf389038ef4f15d79f5aeed872653964 ./contracts/IdleControllerStorage.sol

af517e1c7773edd612f148b79be5f99b710770d16f3b90a59e79c0c438a622b2 ./contracts/Migrations.sol

523823761ff2517903c1aaf4f8d240ab6cd36d2a9e972b76e98ab1182088fd72 ./contracts/PriceOracle.sol

fd89fbde26cceba50b2c8ff960195ebc682fa50025a3cc1c0a062944116e9392 ./contracts/Reservoir.sol

d96fd3db5dcb78fa62d6c3c62c0cbc69af20fbec82c3714960d6569c1a0c6ec1 ./contracts/Timelock.sol

0d1cb7994cc926a592d107d7d2577eab450d6d581da06a04b4580e9a72a652d7 ./contracts/Unitroller.sol

9438313d1a2422d6bc492a4f3fed2cf47d24d4f6b4a01dbaf58be142f1898634 ./contracts/Vester.sol

9096d9e048ff2fe1146a64d40ad78bc768f5bb930787d88c4503dd0ae14291a1 ./contracts/VesterFactory.sol

59f28a92602fc8db4a19fdc20b1f6668276cfce32c9a5007a878d292eb708429 ./contracts/mocks/CERC20Mock.sol

799e038edda5225839238f7f09e1c32c129fb1ceefb238106f520131634868ff ./contracts/mocks/ChainLinkOracleMock.sol

5f4b7719cd71ad190a85b10eb919f3915ea5d713e0c6308c2d929c0ab532ae99 ./contracts/mocks/ComptrollerMock.sol

efcaaa15b737386149a1b36e21cf013fe64bc09f9070e30f5b327d29704780a5 ./contracts/mocks/IdleTokenMock.sol

5fc682a8d24d2cb3c5e3ad65874cbe17104fd311bca56ab65e2449681d48629f ./contracts/mocks/PriceOracleMock.sol

418f700b45778517311e4ee3c2541706c67dd01abe045277ab90d03a596c0de4 ./contracts/mocks/Token8Mock.sol

757c658b1f4702da6eeaead720d761e3a47ec853eedf80def11a1e498123f1ab ./contracts/mocks/TokenMock.sol

70e97f49e0a6b17852f911a28b6ca3483c58ba016b39c0cee2669cb57ba01934 ./contracts/lib/CarefulMath.sol

1317006b25a9a3db0617687ba229377a2401343ed42286b09b1b92e2c1199b8c ./contracts/lib/Exponential.sol

2afe580ca19a58668ac7d2c921e41871ddf5be5acbff53aad675fdbb4dc0e9ae ./contracts/interfaces/CERC20.sol

6583d26353cc86749627494c75cec775ca64c257a5920195a63f3a10529f9e11 ./contracts/interfaces/ChainLinkOracle.sol

04867dae08479e7c182c2bbe2d88272796171b208a2cbd7b52d1cfd57e8f0d07 ./contracts/interfaces/Comptroller.sol

1e41d4dd2cb51a14b0f9ee6515e160cdc69e6a7192b20233456aea124fb42dc8 ./contracts/interfaces/IdleToken.sol

Tests

feacb25facac1f080eb55b3f73d10ae3312c58af922d10a0d917806a57b4c9f1 ./test/EarlyRewards.js

a746ffe36cfe4b9e66313787c8ff7568d9868c3c382453f818996ddc8191f320 ./test/IdleController.js

46009cac4439f8775be0d59e28d59907c9b6748c90874d2da9170610fe41a6f1 ./test/PriceOracle.js

Changelog

2020-10-20 - Initial report•

2020-10-26 - Reaudit report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Idle Governance Audit

