
April 26th 2021 — Quantstamp Verified

Idle Finance
This smart contract audit was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Token Lending Aggregator

Auditors Ed Zulkoski, Senior Security Engineer
Kacper Bąk, Senior Research Engineer
Poming Lee, Research Engineer
Sebastian Banescu, Senior Research Engineer

Timeline 2019-12-02 through 2021-04-23

EVM Muir Glacier

Languages Solidity, Javascript

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification README.md

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

idle-contracts 937f989 (initial audit)

idle-contracts b5fb299 (latest audit)

Goals Do functions have proper access control
logic?

•

Are there centralized components of the
system which users should be aware?

•

Do the contracts adhere to best practices?•

Total Issues 39 (25 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 4 (4 Resolved)

Low Risk Issues 11 (9 Resolved)

Informational Risk Issues 18 (8 Resolved)

Undetermined Risk Issues 6 (4 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/bugduino/idle-contracts/blob/master/README.md
https://github.com/Idle-Labs/idle-contracts
https://github.com/bugduino/idle-contracts/commit/937f989c46beaf9405fab0bc4530a3a8b14c1fb7
https://github.com/Idle-Labs/idle-contracts
https://github.com/Idle-Labs/idle-contracts/commit/b5fb299fafb34a84a120f8d7c77895f6f9de5840

Summary of Findings

The Idle contracts are generally well documented and well designed. Our main concerns below relate to centralized components of the system, and ensuring that users are aware of the
roles and responsibilities of the Idle Finance team as owners of the smart contracts. We also noted some potential access control issues associated with rebalancing, which may lead to
sub-optimal token allocations.

Idle Finance has addressed our concerns as of commit .Update: bcb6f09
Recently, several attacks have occurred on bZx/Fulcrum (for reference, see and), allowing lenders to create highly under-collateralized loans. Since Fulcrum is

one of the underlying protocols that Idle may lend on, we recommend investigating these attacks to determine how much impact this may have on the Idle protocol. It may be prudent to
temporarily disable Fulcrum as a potential lending platform until the full extent of the issues has been investigated. As a simple approach, we believe this could be accomplished in the
following manner:

Update 2: Attack 1 Attack 2

1. Deploy a new "dummy" wrapper contract that returns zero whenever or are invoked. This essentially ensures
that the rebalancer will always favor other wrappers when calculating the allocations.

nextSupplyRate() nextSupplyRateWithParams()

2. As the owner, invoke .IdleToken.setProtocolWrapper("fulcrum address", "dummy wrapper address")

Note that we also recommend adding additional tests to ensure that supply rates equal to zero do not cause any adverse affects.
We have reviewed version 3 of the contracts based on commit . Our audit focused on the new wrapper contracts associated with and , and the new

and . We noted several new sources of centralization, parts of the code which required further documentation, and possible gas-constant related
issues. We recommend addressing these concerns before deploying the V3 contracts to production.

Update 3: a71a706 Aave DyDx
IdleTokenV3 IdleRebalancerV3

Several of our concerns have been addressed as of commit .Update 4: 64f22d0
Our concerns have been addressed as of commit .Update 5: fefd01d
All concerns have been addressed as of commit .Update 6: 7d3b7e4
Quantstamp has reviewed updates to the contracts as of commit .Update 7: 93d3429
Quantstamp has reviewed updates as of commit .Update 8: f9c02d1
Quantstamp has reviewed updates as of commit . In this iteration, only , , and were audited

(against the previously audited "V3" versions). New findings can be found in QSP-14 through QSP-20, and have been appended to the Best Practices and Documentation sections.
Update 9: 35d61ae IdleTokenV3_1.sol IdleRebalancerV3_1.sol IdleCompound.sol

Quantstamp has reviewed updates as of commit . All existing issues have been resolved. However, there are several contracts such as ,
, and which we suggest improving coverage for.

Update 10: 338ec24 GSTConsumer*.sol
IdleDSR.sol IdleDyDx.sol

The Idle team has alerted Quantstamp of an issue in , in which the incorrect number of decimal places had been used. This issue has been
resolved, and no new issues were found as of commit .
Update 11: IdleTokenV3_1._tokenPrice()

1b40261
Several new issues of varying severity were noted during the audit of commit , as discussed in QSP-21 through QSP-31, and as appended to the best practices and

documentation sections. Note that only was reviewed in this iteration.
Update 12: 50da42b9

IdleTokenV3_1.sol
All issues have been addressed as of commit .Update 13: bd40915
The report has been updated based on the diff . This iteration is only scoped to changes in and .

New findings are listed in QSP-32 through QSP-41, as well as appended to the best practices and documentation sections.
Update 14: b928e84…e09d4f5 IdleTokenGovernance.sol IdleTokenHelper.sol

The report has been updated based on commit . All previous issues have been resolved, mitigated, or acknowledged, and one new informational issue was added.
Some acknowledged issues are not fully fixed due to contract bytecode size limits; we recommend refactoring the code into several contracts to avoid this problem.
Update 15: b5fb299

ID Description Severity Status

QSP-1 Centralization of Power Medium Fixed

QSP-2 Missing modifier on andonlyIdle mint()
redeem()

Low Fixed

QSP-3 Gas Usage / Loop Concernsfor Informational Fixed

QSP-4 Clone-and-Own Informational Fixed

QSP-5 Unlocked Pragma Informational Fixed

QSP-6 Undocumented magic constants Informational Fixed

QSP-7 Use of ABIEncoderV2 still experimental Informational Fixed

QSP-8 Unchecked constructor and setter
address arguments

Informational Fixed

QSP-9 Allowance Double-Spend Exploit Informational Acknowledged

QSP-10 Function may be blocked due
to Fulcrum failure

rebalance() Informational Fixed

QSP-11 Security of Idle contracts is dependent on
underlying lending protocols

Informational Acknowledged

QSP-12 may overwritenewIdleToken()
underlyingToIdleTokenMap[_token]

Undetermined Fixed

QSP-13 Gas constants may be affected by new
EVM forks

Undetermined Fixed

QSP-14 may fail if is reset
to zero
redeemIdleToken() fee Medium Fixed

QSP-15 Loss of precision due to truncation Low Fixed

QSP-16 Missing address sanitization Low Acknowledged

QSP-17 Length of input arrays can be different Low Fixed

QSP-18 Unclear update to
mapping

userAvgPrices Low Fixed

QSP-19 Potential flash loans attack vectors to
claim COMP tokens

Low Fixed

QSP-20 Privileged Roles and Ownership Informational Acknowledged

QSP-21 User may not be able to redeem Idle
tokens

Medium Fixed

QSP-22 Outdated could be used to
influence the average APR

govToken Low Fixed

QSP-23 Incorrect hardcoded addresses Low Acknowledged

QSP-24 Inconsistent array lengths breaks
invariants

Low Fixed

QSP-25 Initialization can be done multiple times Informational Acknowledged

QSP-26 Missing input check Informational Acknowledged

QSP-27 Missing return value Informational Acknowledged

QSP-28 Privileged roles Informational Acknowledged

QSP-29 Incorrect average price computation Undetermined Fixed

QSP-30 Uninitialized inherited contracts and state
variables

Undetermined Acknowledged

QSP-31 Unclear functionality in _getFee Undetermined Fixed

QSP-32 Wrong comparison between lengths Medium Mitigated

QSP-33 The is not settableflashLoanFee Low Fixed

QSP-34 Inconsistent array lengths breaks
invariant

Low Mitigated

https://github.com/bugduino/idle-contracts/commit/bcb6f097e6614bfa5aa9be3cb4dacb98d73992e7
https://bzx.network/blog/postmortem-ethdenver
https://www.theblockcrypto.com/post/56207/bzx-attacked-again-645k-in-eth-estimated-to-be-lost
https://github.com/bugduino/idle-contracts-private/commit/a71a706501ef2984412fa63855c233e709380524
https://github.com/bugduino/idle-contracts-private/commit/64f22d0e41bafe4096dc7757b69535ab09951c2f
https://github.com/bugduino/idle-contracts-private/commit/fefd01da53ef49f63257ef85ea35399d8cb91368
https://github.com/bugduino/idle-contracts-private/commit/7d3b7e4ff2f9d3f1a6eb3359ec48f51408cbb67a
https://github.com/bugduino/idle-contracts-private/commit/93d342952a96ccf43a8216caae6a1a258f2f181f
https://github.com/bugduino/idle-contracts-private/commit/f9c02d136197d3b251952c218e7571c8aa113e22
https://github.com/bugduino/idle-contracts-private/commit/35d61aee52fce637866957ad712b9da4bd821db5
https://github.com/bugduino/idle-contracts-private/commit/338ec241934cfa0c556cbf78385e05832239bbfa
https://github.com/bugduino/idle-contracts-private/commit/1b402616465de49cb3299da4e87ac083d323ca9b
https://github.com/bugduino/idle-contracts-private/commit/50da42b97f0678e3435fa7541fe43f600ce897cd
https://github.com/bugduino/idle-contracts-private/commit/bd409159972d5e6bb718af75015d20311f9e86d2
https://github.com/Idle-Labs/idle-contracts/compare/b928e84009e3de8e28940d9ab2e5119467d788d0%E2%80%A6e09d4f52af1aea9e4d673c14d101d09214591600
https://github.com/Idle-Labs/idle-contracts/commit/b5fb299fafb34a84a120f8d7c77895f6f9de5840

ID Description Severity Status

QSP-35 Flashloans may decrease funds if
underlying protocols have redemption
fees

Informational Acknowledged

QSP-36 Unchecked function arguments Informational Acknowledged

QSP-37 Flashloan could be used as a tool to
manipulate liquidities of the underlying
lending protocols

Informational Acknowledged

QSP-38 Uninitialized state variables Undetermined Acknowledged

QSP-39 Owner can front-run flash loaners to
change loan fee

Informational Mitigated

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v4.1.12• Truffle

v0.5.8• SolidityCoverage

v0.22.8• Mythril

v0.6.12• Slither

Steps taken to run the tools:

1. Installed Truffle: npm install -g truffle

2. Installed the solidity-coverage tool (within the project's root directory): npm install --save-dev solidity-coverage

3. Ran the coverage tool from the project's root directory: ./node_modules/.bin/solidity-coverage

4. Installed the Mythril tool from Pypi: pip3 install mythril

5. Ran the Mythril tool on each contract: myth a path/to/contract

6. Installed the Slither tool: pip install slither-analyzer

7. Run Slither from the project directory: sslither .

https://truffleframework.com/
https://github.com/sc-forks/solidity-coverage
https://github.com/ConsenSys/mythril
https://github.com/crytic/slither

Findings

QSP-1 Centralization of Power

Severity: Medium Risk

FixedStatus:

, , , ,File(s) affected: IdleFulcrum.sol IdleRebalancer.sol IdleCompound.sol IdleTokenV3.sol IdleRebalancerV3.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract.Description: owner
In several contracts, the associated tokens may be changed by the owner. If the balances of the contracts are non-zero, users may not be able to retrieve funds or interact with the contract in a
proper manner. In particular:

In and , tokens may be updated by and .• IdleFulcrum IdleCompound setToken() setUnderlying()

In , , , , , and may update underlying addresses.• IdleRebalancer.sol setIdleToken() setCToken() setIToken() setCTokenWrapper() setITokenWrapper()

In and , the owner may add new token wrappers arbitrarily (which may not correspond to actual lending protocols).
Additionally, the owner may pause/unpause certain functionalities, such as rebalancing.

• IdleTokenV3 IdleRebalancerV3.sol

Limit the amount of centralized components in the system if possible. For example, if the underlying token is unlikely to change, consider setting it upon contract construction
and removing the corresponding function. Additionally, this centralization of power needs to be made clear to the users, especially depending on the level of privilege the
contract allows to the owner.

Recommendation:
setUnderlying()

Idle Finance has removed the corresponding setter functions. The centralization is mitigated as users may still redeem funds while the contract is paused. The centralization
around adding new wrappers is mitigated through the use of a delay-scheme, such that new wrappers only go into effect after several days.
Update: pausing

QSP-2 Missing modifier on andonlyIdle mint() redeem()

Severity: Low Risk

FixedStatus:

File(s) affected: IdleCompoundV2.sol

For the functions and , there is no modifier, whereas the modifier exists in the corresponding functions in
, , and . This would allow funds stored in the wrapper contract to be sent to an arbitrary address. Although

the typical dApp workflow does not store funds directly in the wrapper contract (in favor of storing balances in , users interacting directly with the wrapper
contract may mistakenly add funds to the contract directly. Adding the modifier to these functions would mitigate these incorrect interactions.

Description: IdleCompoundV2.mint() IdleCompoundV2.redeem() onlyIdle
IdleCompound.sol IdleFulcrum.sol IdleFulcrumV2.sol IdleCompoundV2

IdleToken IdleCompoundV2
onlyIdle

Add the modifier to and .Recommendation: onlyIdle IdleCompoundV2.mint() IdleCompoundV2.redeem()

QSP-3 Gas Usage / Loop Concernsfor

Severity: Informational

FixedStatus:

,File(s) affected: IdleRebalancer.sol IdleToken.sol

Gas usage is a main concern for smart contract developers and users, since high gas costs may prevent users from wanting to use the smart contract. Even worse, some gas usage
issues may prevent the contract from providing services entirely. For example, if a loop requires too much gas to exit, then it may prevent the contract from functioning correctly entirely. It
is best to break such loops into individual functions as possible.

Description:
for

In particular, the rebalancing functions may require several loops in the bisection algorithm.

We recommend performing gas analysis to ensure that each loop-function will not run into gas limitations, particularly for large inputs.Recommendation:
Idle Finance has indicated that each iteration of the bisection algorithm consumes approximately 12,500 gas, so the limit of (as defined in the constructor)

should be sufficient to avoid gas limits.
Update: maxIterations = 30

QSP-4 Clone-and-Own

Severity: Informational

FixedStatus:

File(s) affected: IdleMcdBridge.sol

The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

Description:

In , there are several libraries that could be imported: , , , and .IdleMcdBridge.sol IERC20 SafeMath Context Address

Rather than the clone-and-own approach, a good industry practice is to use the Truffle framework for managing library dependencies. This eliminates the clone-and-own
risks yet allows for following best practices, such as, using libraries.
Recommendation:

QSP-5 Unlocked Pragma

Severity: Informational

FixedStatus:

File(s) affected: IdleMcdBridge.sol

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,
meaning that the compiler will use the specified version , hence the term "unlocked."
Description: pragma solidity (^)0.4.* ^

and above
The file has several instances of unlocked pragmas throughout.IdleMcdBridge.sol

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version.Recommendation:

QSP-6 Undocumented magic constants

Severity: Informational

FixedStatus:

,File(s) affected: IdleAave.sol GST2Consumer.sol

There are several defined constants in the code that were unclear, and would benefit from added inline documentation:Description:

In , L161: the number 29;• IdleAave.sol

In , the constant on L143 of : ;• IdleAave.sol getApr() 100/10^9

In , all numerical constants on L15, 19-20;• GST2Consumer.sol

In , on L32, it is not immediately clear that the constant 100000 is 100%.• IdleRebalancerV3.sol

Add documentation describing these constants.Recommendation:

QSP-7 Use of ABIEncoderV2 still experimental

Severity: Informational

FixedStatus:

File(s) affected: yxToken.sol

Until solidity 0.6.0, the ABIEncoderV2 feature is still technically in experimental state. Although there are no known security risks associated with it, these features should be used
judiciously.
Description:

Upgrade the contracts to a more recent solidity version such as or . All contracts that depend upon ABIEncoderV2 functionality should be tested thoroughly.Recommendation: 0.5.16 0.6.6

QSP-8 Unchecked constructor and setter address arguments

Severity: Informational

FixedStatus:

File(s) affected: IdleRebalancerV3.sol

* In , on L28, the constructor arguments and were not checked to be non-zero.Description: IdleRebalancerV3.sol _yxToken _rebalancerManager

In , the constructor and all setter functions should check that addresses are non-zero.• IdleTokenV3.sol

Add require statement ensuring that these parameters are non-zero.Recommendation:

QSP-9 Allowance Double-Spend Exploit

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenV3.sol

As it presently is constructed, the contract is vulnerable to the , as with other ERC20 tokens.Description: allowance double-spend exploit

An example of an exploit goes as follows:Exploit Scenario:

1. Alice allows Bob to transfer amount of Alice's tokens () by calling the method on smart contract (passing Bob's address and as method
arguments)

N N>0 approve() Token N

2. After some time, Alice decides to change from to () the number of Alice's tokens Bob is allowed to transfer, so she calls the method again, this time
passing Bob's address and as method arguments

N M M>0 approve()
M

3. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the method to transfer Alice's tokens
somewhere

transferFrom() N

4. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer Alice's tokens and will gain an ability to transfer another tokensN M

5. Before Alice notices any irregularities, Bob calls method again, this time to transfer Alice's tokens.transferFrom() M

The exploit (as described above) is mitigated through use of functions that increase/decrease the allowance relative to its current value, such as and
.

Recommendation: increaseAllowance
decreaseAllowance
Pending community agreement on an ERC standard that would protect against this exploit, we recommend that developers of applications dependent on /
should keep in mind that they have to set allowance to 0 first and verify if it was used before setting the new value. Teams who decide to wait for such a standard should make these
recommendations to app developers who work with their token contract.

approve() transferFrom()

QSP-10 Function may be blocked due to Fulcrum failurerebalance()

Severity: Informational

FixedStatus:

File(s) affected: IdleTokenV3.sol

On of , the modifier checks that function can only be executed when the iToken price has not
decreased. However, since could get hacked (or the price of collateral may drop), it might not always be true. When this happens, the system would not be able to rebalance/reallocate
funds for a period of time.

Description: L508 IdleTokenV3.sol whenITokenPriceHasNotDecreased _rebalance
Fulcrum

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/b4f87bb8fc25fb07f73099701e39e167a3d36465/contracts/token/ERC20/ERC20.sol#L71-L78

There is a trade-off here -- including the modifier may cause delays in rebalancing, whereas removing it may cause adverse token allocations to Fulcrum. Documentation
should be added describing the need for the modifier if it remains.
Recommendation:

QSP-11 Security of Idle contracts is dependent on underlying lending protocols

Severity: Informational

AcknowledgedStatus:

,File(s) affected: IdleTokenV3.sol IdleRebalancerV3.sol

Although there is no immediate exploit known at this time, since protocol wrappers can be added arbitrarily in the future, this issue could occur, and further unforeseen issues could
arise in the existing underlying protocols.
Description:

If a wrapped protocol is attackable, possibly through (but not limited to) flash loans, the following could occur. Suppose initially all funds are allocated to a secure protocol .Exploit Scenario: P S

1. Using a flash loan, the attacker creates a favorable price for and invokes . This causes the distribution to shift all underlying tokens to .P rebalance() P

2. The attacker attacks , which now has significantly more liquidity since all Idle funds are now allocated to it.P

This issue is partially mitigated already for Fulcrum through checks on the price, and further through the ability to pause rebalancing. New wrappers should be
added cautiously.
Recommendation: iToken

QSP-12 may overwritenewIdleToken() underlyingToIdleTokenMap[_token]

Severity: Undetermined

FixedStatus:

File(s) affected: IdleFactory.sol

If is called with an existing address, the contract referenced in the will be overwritten. It is not clear if this
is intended functionality.
Description: newIdleToken() _token IdleToken underlyingToIdleTokenMap

Document whether this is intended functionality. If not, prevent calls with existing addresses.Recommendation: newIdleToken() _token
Idle Finance has addressed this concern through added documentation.Update:

QSP-13 Gas constants may be affected by new EVM forks

Severity: Undetermined

FixedStatus:

File(s) affected: GST2Consumer.sol

In , several constants are defined related to gas usage. Since op-code gas costs may be updated in new forks, this may cause unforeseen gas issues in future
forks.
Description: GST2Consumer.sol

Ensure that this functionality has been tested on the most recent EVM fork. In order to be resilient to future forks, setter functions could be added to update the
gas variables.
Recommendation: onlyOwner

this has been fixed through the use of an setter function for the gas variables.Update: onlyOwner

QSP-14 may fail if is reset to zeroredeemIdleToken() fee

Severity: Medium Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

Assume that:Description:
A1: can only accumulated when is set to (according to the function).userNoFeeQty[msg.sender] fee 0 _updateAvgPrice()
A2: the price of idleToken is and does not change a lot (this happens when the is large).5 balanceUnderlying
Consider the following scenario for some :user1

1. deposits underlying token when is set to . The will obtain idleToken, and we noted that equals touser1 100 fee 0 user1 100/5 = 20 userNoFeeQty[user1] 20

2. Then the idleFinance team decides to change the from to .fee 0 1000

3. When the later deposit again, with another underlaying token, the will obtain idleToken again. In addition to the formerly obtained
idleToken, now the has idleTokens on hand. However, since now, the will remains equal to instead of equal to

.

user1 100 user1 100/5 = 20 20
user1 20 + 20 = 40 fee != 0 userNoFeeQty[user1] 20

20 + 20 = 40

4. Then the idleFinance team decides to change the from to again.fee 1000 0

5. Finally, when decides to redeem idleTokens through function by passing the parameter , we have that the is but
the is . This will cause the revert of the function due to the statement:

.

user1 redeemIdleToken() _amount = 40 _amount 40
userNoFeeQty[user1] 20 userNoFeeQty[msg.sender] =

userNoFeeQty[msg.sender].sub(_amount);

Revise the functionality to account for this scenario.Recommendation: userNoFeeQty

QSP-15 Loss of precision due to truncation

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

The computation of the average APR inside the function, is performed by normalizing (dividing by) the APR for each token separately and adding the
normalized values together. Due to the limited precision and truncation of the division operation, there might be a loss of precision in this computation.
Description: getAvgAPR() total

Similarly the division by can be moved outside of the for-loop in the function.10**18 _getCurrentPoolValue

To increase the precision of the average APR (and save gas), one could first add all APRs multiplied by the amounts together and only divide by the at the end of the
for-loop like so:
Recommendation: total

for (uint256 i = 0; i < allAvailableTokens.length; i++) {
if (amounts[i] == 0) {
continue;

}
avgApr = avgApr.add(
ILendingProtocol(protocolWrappers[allAvailableTokens[i]]).getAPR().mul(amounts[i]);

);
}
avgApr = avgApr.div(total);

QSP-16 Missing address sanitization

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

The values inside the array input parameter are not checked to be different from inside the function.Description: _newGovTokens 0x0 setGovTokens

Add statement that checks that the value of the is different from .Recommendation: require _newGovTokens 0x0
This has been acknowledged, however the check has not been added due to contract bytesize limitations.Update:

QSP-17 Length of input arrays can be different

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

There are multiple occurrences of this issue:Description:

1. There is no check in place inside the function inside , which checks if the length of the , and the
input arrays are equal. Since the for-loop inside this function goes up to it would be problematic if the lengths of the other arrays would be different
(shorter or longer).

redeemAllNeeded IdleTokenV3_1 tokenAddresses amounts newAmounts
amounts.length

2. There is no check in place inside the function inside , which checks if the length of the and the
input arrays are equal. Since the for-loop inside this function goes up to it would be problematic if the lengths of the other array would be
different (shorter or longer).

_mintWithAmounts IdleTokenV3_1 tokenAddresses protocolAmounts
protocolAmounts.length

3. There is no check in place inside the function inside , which checks if the length of the and the
arrays have the same length. This could lead to removing or adding tokens and/or changing the order of the tokens w.r.t. the

array order.

setAllAvailableTokensAndWrappers IdleTokenV3_1 protocolTokens
allAvailableTokens lastAllocations

Check whether the lengths of input array parameters of functions are the same whenever this is a prerequisite.Recommendation:
Regarding , those params come from which reads current contract data so it should not be a problem.Update: _redeemAllNeeded _getCurrentAllocations

QSP-18 Unclear update to mappinguserAvgPrices

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

In the function , the mapping is not updated if the . It is not clear why the mapping is not updated in this case, but since this case
is not covered, the user's average price may not be correct in all scenarios.
Description: _updateAvgPrice userAvgPrices fee == 0

Either update the function to update the average price in all branches, or consider renaming the mapping.Recommendation:

QSP-19 Potential flash loans attack vectors to claim COMP tokens

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

After discussion with the Idle team, it appears that there may exist attack vectors that claim COMP tokens using flash loans, if a rebalance or redeem has not been invoked in a long
time. This attack could occur if mint and redeem are invoked with a large balance in the same transaction (via a flash loan).
Description:

Add a lock variable that prevents a user from invoking mint and redeem functions within the same transaction.Recommendation:

QSP-20 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

,File(s) affected: IdleRebalancerV3_1.sol IdleTokenV3_1.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract.Description: owner

Within , the owner can perform the following actions:IdleRebalancerV3_1

1. Can set the idle token exactly once via setIdleToken

2. Can set the rebalance manager address any number of times via setRebalanceManager

3. Can add any number of new tokens via setNewToken

4. Another role enforced by modifier, which allows the rebalance manager or idle token to set completely new token allocations, for exactly the
same token addresses, that sum up to 100% (any number of times).

onlyRebalancerAndIdle

The contract contains the following privileged actions:IdleTokenV3_1.sol

1. Modify the array any number of timesallAvailableTokens

2. Set the address of the any number of timesiToken

3. Set the governance token address any number of timesgovTokens

4. Set the rebalancer address any number of times

5. Set the fee taken from end users any number of times to any value lower or equal to 10%

6. Set the maximum unlent asset percentage to any value lower than 100%

7. Set the fee address any number of times.

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:
Updated documentation will be provided as in .Update: here

QSP-21 User may not be able to redeem Idle tokens

Severity: Medium Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

If the is lower than the for that user, then the method call on L911 in will throw an error and revert the transaction. Given that the
function is only called in it will lead to users not being able to redeem Idle tokens as long as the current price is lower than the for that user.

Description: _tokenPrice() userAvgPrices sub _getFee
_getFee redeemIdleToken userAvgPrices

If then set the to zero in .Recommendation: currPrice < userAvgPrices[msg.sender] elegibleGains _getFee

QSP-22 Outdated could be used to influence the average APRgovToken

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

The following condition in , on L358: only checks if the length of is greater than zero.
However, it does not check if the length of the is greater than (the loop iterator) or if the is in the array. Due to the way in which the
function works, it may be the case that but is not included in the array. This could have very severe consequences because any user is
allowed to call , which changes the allocations based on the results obtained from calling . The function would return the wrong results, because it
would take into consideration removed .

Description: _getAvgAPR if (govTokens.length > 0 && currGov != address(0)) govTokens
govTokens i currGov govTokens setGovTokens

currGov != address(0) currGov govTokens
openRebalance _getAvgAPR _getAvgAPR

govTokens

Exploit Scenario:

1. Owner decides to call in order to remove some which are no longer valid (e.g. the projects corresponding to those were hacked).
Note that the method does not set the entries for those removed tokens to .

setGovTokens govTokens gotTokens
setGovTokens protocolTokenToGov address(0)

2. Malicious party calls and allocates a large portion of funds to a token that has a corresponding that was removed in step 1. The malicious
party knows that the price oracle will return a large APR for that , which will skew the result of .

openRebalance govToken
govToken _getAvgAPR

Set the entries for the removed tokens to inside the method.Recommendation: protocolTokenToGov address(0) setGovTokens

QSP-23 Incorrect hardcoded addresses

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

1. The address of the Idle governance token is hardcoded to on L85.Description: 0x0001

1. The address of the is hardcoded to on L111.oracle 0x0001

2. The address of the is hardcoded to on L112.idleController 0x0001

3. The following address seems to be an EOA, not a smart contract L131: rebalancer = address(0xB3C8e5534F0063545CBbb7Ce86854Bf42dB8872B);

4. The address of the is hardcoded to on L130 and there is no setter function to change the address.iToken address(0) iToken

Update the values and remove TODO comments. Clarify why needs to be a hardcoded constant, instead of being updated via a setter/initialization function similar to
and . Also why not allow these addresses to be passed as input parameters to the function instead of hardcoding them?

Recommendation: IDLE
oracle idleController manualInitialize

All addresses will be se once the governance is deployed. The rebalancer address is an EOA now because we removed the need for
by moving the functionalities directly in . The address set is the rebalancer address that was previously had in (before was just a proxy basically). The

address is hardcoded to correctly because we don't support Fulcrum anymore and we don't use that variable anymore. IDLE address should not be upgradable once set,
while and addresses can change (The is an upgradable contract actually so the address will be the same; we removed the

method too.) Those addresses were not passed in the because we are at the very limit of the max bytecode size so any addition change
needs to get some 'space' somewhere else. We removed also the method, which will be reintroduced later.

Update from the Idle Finance team: IdleRebalancerV3_1
IdleTokenV3_1 IdleRebalancerV3_1

iToken address(0)
PriceOracle IdleController IdleController

setIdleControllerAddress manualInitialize
setMaxUnlentPerc

https://developers.idle.finance/advanced/admin-powers

QSP-24 Inconsistent array lengths breaks invariants

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

The length of the array and the and arrays may diverge after calling
, even if they were the same length after . This is because the allocations are not adjusted or checked to be of the same length

with the or input arrays. This means that the owner can remove tokens from the array and the sum of all corresponding allocations would
not be 100% after that call.

Description: allAvailableTokens lastRebalancerAllocations lastAllocations
setAllAvailableTokensAndWrappers manualInitialize

protocolTokens wrappers allAvailableTokens

Exploit Scenario:

1. Owner (accidentally) removes 1 or more tokens by calling setAllAvailableTokensAndWrappers

2. Either the owner forgets to call OR they call , but are front-run by an end-user that calls or .setAllocations setAllocations openRebalance rebalance

Either add a check inside which does not let the owner remove tokens OR add another input array to
which indicates the new allocations. Optionally, a Boolean input parameter could also be added to which

indicates that the allocation should stay the same, in which case a statement must check if the length of the input parameter is the same as the length of
.

Recommendation: setAllAvailableTokensAndWrappers
setAllAvailableTokensAndWrappers setAllAvailableTokensAndWrappers

require protocolTokens
allAvailableTokens

QSP-25 Initialization can be done multiple times

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

The owner of the could call multiple times. This would reset several state variables. The semantics of the function name gives the
impression that it should only be called once.
Description: IdleTokenV3_1.sol manualInitialize

Add a flag which is checked to be when the function starts executing and is set to inside .Recommendation: false manualInitialize true manualInitialize
Once deployed, should be called only once and then a new implementation of should be deployed and set for all

proxies (I added a file which is a copy of with removed and reintroduced). The
new implementation should simply have removed in order to save bytecode size for future updates by the governance and it will also allow us to use the compiler
optimization runs which are currently set to 1 so we can also save some gas on calls, we avoided to add a flag checking this because of what said above and because we tried to save bytecode
size everywhere possibile (Current bytecode size with some dummy address set instead of placeholders is 24567.5 vs max of 24576, and with the method removed.)

Update from the Idle Finance team: manualInitialize IdleTokenV3_1
idleToken IdleTokenGovernance.sol IdleTokenV3_1.sol manualInitialize setMaxUnlentPerc

manualInitialize

setMaxUnlentPerc

QSP-26 Missing input check

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

Description:

1. The function does not check if the length of the 2nd, 3rd and 4th input arrays is the same. The -loop inside this function assumes the length of
, and input arrays is the same.

manualInitialize for
_protocolTokens _wrappers _lastRebalancerAllocations

2. A comment on L105 indicates that the array "should include IDLE". However, this is not verified inside the function. It could be verified by setting a
binary flag to true inside the -statement on , and then checking this flag after the -loop using a
statement.

_newGovTokens
if L124: if (newGov == IDLE) { continue; } for require

Add statements accordingly.Recommendation: require
Some checks have not been added mostly to save on bytecode size.Update from the Idle Finance team:

QSP-27 Missing return value

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

The function does not have an explicit return value for the cases where the -statement is not entered, i.e. the -condition is not .Description: getGovApr if if true

Add an explicit statement after the -statement.Recommendation: return if
Some statements have not been added mostly to save on bytecode size.Update from the Idle Finance team: return

QSP-28 Privileged roles

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

The owner of the contract has the right to change the following state variables at any time, they can even front-run end-users:Description: IdleTokenV3_1

1. can be set to any address including EOAssetAllAvailableTokensAndWrappers

2. can be set to any address including EOAssetGovTokens

3. can be set to any address including an EOAsetRebalancer

4. upper bounded by 10%setFee

5. upper bounded to 100%setMaxUnlentPerc

6. can be set to any address including an EOAsetFeeAddress

7. can be set to any address including an EOAsetOracleAddress

8. can be set to any address including an EOAsetIdleControllerAddress

9. setIsRiskAdjusted

10. this can also be done by the addresssetAllocations rebalancer

These privileged operations and their potential consequences should be clearly communicated to (non-technical) end-users via publicly available documentation.Recommendation:
The owner will be transferred to the governance right on deployment; one multisig wallet controlled by us will have the ability to pause the contract in case

of emergency (withdrawals are not paused) but other than that the owner of the contract will be the from governance right in the deployment. You can see the migration scripts
number 5 and the newly added number 6 for transferring ownership to governance. Public documentation will get revamped prior to the governance launch.

Update from the Idle Finance team:
Timelock.sol

QSP-29 Incorrect average price computation

Severity: Undetermined

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

The part of the input parameter of the function is subtracted twice from : on deposits on L889 and L892. See the
following code snippet:
Description: userNoFeeQtyFrom qty _updateUserFeeInfo totBalance

889: uint256 totBalance = balanceOf(usr).sub(userNoFeeQty[usr]);
890: // noFeeQty should not be counted here
891: // (avgPrice * oldBalance) + (currPrice * newQty)) / totBalance
892: userAvgPrices[usr] = userAvgPrices[usr].mul(totBalance.sub(qty)).add(price.mul(qty)).div(totBalance);

This happens because was already added to , which is first subtracted on L889. This leads to an incorrect for that user.
Additionally, the should not be multiplied by on L892, because on transfers, the amount that is actually transfered to is equal to .

userNoFeeQtyFrom userNoFeeQty[usr] userAvgPrice
price qty usr userNoFeeQtyFrom

Update the average price computation to take into account that an amount of was already subtracted from on deposits.Recommendation: userNoFeeQtyFrom totBalance

QSP-30 Uninitialized inherited contracts and state variables

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: IdleTokenV3_1.sol

The method has been replaced with the method, which is significantly different:Description: initialize manualInitialize

1. There are several inherited contracts which were initialized in the , but are not initialized in the method. The following code snippet
indicates the initialization of these contracts, which was removed:

initialize manualyInitialize

// Initialize inherited contracts
ERC20Detailed.initialize(_name, _symbol, 18);
Ownable.initialize(msg.sender);
Pausable.initialize(msg.sender);
ReentrancyGuard.initialize();
GST2ConsumerV2.initialize();

1. Similarly, the following state variables: , , and , were initialized in the method, but are not initialized in the
method.

token tokenDecimals cToken maxUnlentPerc initialize
manualyInitialize

Clarify if this is intentionally left uninitialized for some reason. If not, add the initialization of the aforementioned inherited contracts and state variables.Recommendation:
is an upgradable contract and that method has already been called once, hence it can be removed now (for deployments of

new we would need to reintroduce it). will initialize this new implementation (storage is still the old one so no need to update).
Update from the Idle Finance team: IdleTokenV3_1 initialize

IdleTokens manualInitialize

QSP-31 Unclear functionality in _getFee

Severity: Undetermined

FixedStatus:

File(s) affected: IdleTokenV3_1.sol

* The functionality of : , is unclear. It seems that what we want to achieve here is more like
when and when

.

Description: L907 userNoFeeQty[msg.sender] = noFees ? noFeeQty.sub(amount) : 0;
userNoFeeQty[msg.sender] = balanceOf(msg.sender).sub(_amount); fee == 0 userNoFeeQty[msg.sender] = noFeeQty.sub(amount) noFeeQty >=
amount

Clarify if the functionality is as-intended.Recommendation:

QSP-32 Wrong comparison between lengths

Severity: Medium Risk

MitigatedStatus:

File(s) affected: IdleTokenGovernance.sol

On L148 in we can see the following statement:
From the other occurrences of we believe that it should indicate that the 2 terms being compared are not equal, which is different from what the Boolean expression in that

Description: IdleTokenGovernance.sol require require(_newGovTokensEqualLen.length >= protocolTokens.length,
'!EQ'); !EQ

statement is comparing, that is the comparison is actually checking if the length of the is higher-or-equal to the length of .require _newGovTokensEqualLen protocolTokens

Recommendation:

1. Change the condition on L148 from to .>= ==

2. It would additionally make sense to check that the length of the is higher-or-equal to the length of , which is currently not
being checked.

_newGovTokensEqualLen _newGovTokens

The maximum length is because IDLE is not associated with any protocol token. Therefore, the statement could
be restricted to .
Update: _newGovTokensEqualLen protocolTokens.length + 1 require

require(_newGovTokensEqualLen.length == protocolTokens.length + 1, '!EQ');

QSP-33 The is not settableflashLoanFee

Severity: Low Risk

FixedStatus:

File(s) affected: IdleTokenGovernance.sol

The cannot be changed by a function call after the contract is deployed. The only way to change it is to upgrade/redeploy the contract.Description: flashLoanFee

We recommend adding a setter method such that the governance account could set it after a community vote.Recommendation:

QSP-34 Inconsistent array lengths breaks invariant

Severity: Low Risk

MitigatedStatus:

File(s) affected: IdleTokenGovernance.sol

this issue is essentially the same as QSP-24 from a previous audit; the fix appears to have been reverted.Description: Note:
The length of the array and the and arrays may diverge after calling

. This is because the allocations are not adjusted or checked to be of the same length with the or input arrays of the
function. This means that the owner can effectively remove tokens from the array and the sum of all corresponding

allocations would not be 100% by calling .

allAvailableTokens lastRebalancerAllocations lastAllocations
setAllAvailableTokensAndWrappers() protocolTokens wrappers
setAllAvailableTokensAndWrappers() allAvailableTokens

setAllAvailableTokensAndWrappers()

Exploit Scenario:

1. Owner (accidentally) removes 1 or more tokens by calling setAllAvailableTokensAndWrappers()

2. Either the owner forgets to call OR they call , but are front-run by an end-user that calls or any
other function which uses the array.

setAllocations setAllocations redeemInterestBearingTokens
allAvailableTokens

This will lead to incorrect amounts being redeemed, loaned, etc.

Either add a check inside which does not let the owner remove tokens OR add another input array to
which indicates the new allocations. Optionally, a Boolean input parameter could also be added to which

indicates that the allocation should stay the same, in which case a statement must check if the length of the input parameter is the same as the length of
.

Recommendation: setAllAvailableTokensAndWrappers
setAllAvailableTokensAndWrappers setAllAvailableTokensAndWrappers

require protocolTokens
allAvailableTokens

From the Idle team -- we won't be changing the , and instead a specific process should be followed when a protocol needs to be removed (i.e.
set allocation for that protocol to 0, ensure that funds have been fully redeemed from that protocol and then do the proposal). method has been removed.
Update: setAllAvailableTokensAndWrappers

openRebalance

QSP-35 Flashloans may decrease funds if underlying protocols have redemption fees

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenGovernance.sol

The function can be used to force triggering the rebalance process and move funds in and out different underlying protocols. If any of the underlying lending protocols
have a redemption fee, an attacker who seeks to damage IdleFinance can achieve this by rapidly performing large value flashloans that cause IdleFinance to redeem and mint the underlying
protocol’s tokens and end up losing money.

Description: flashLoan

Ensure that the fee collected by the flash loan is larger than the sum of the redemption fee of the underlying protocols.Recommendation:

From the Idle team: I think that this would only be true if they charge a fee at the redeem (not counted in their price), but even in that case we could fix it in the strategy itself probably.Update:

QSP-36 Unchecked function arguments

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenGovernance.sol

The function should ensure that is non-zero.Description: _init _tokenHelper

Add a statement ensuring that .Recommendation: require _tokenHelper != address(0)

This is done to save on bytcodesize.Update:

QSP-37 Flashloan could be used as a tool to manipulate liquidities of the underlying lending protocols

Severity: Informational

AcknowledgedStatus:

File(s) affected: IdleTokenGovernance.sol

The can be used to force triggering the rebalance process and moving funds in and out different underlying protocols. A related security issue is described in .Description: flashLoan EIP-3156

While the underlying protocol's are expected to protect against flash loans themselves, this avenue of attack should be considered when adding new protocols to the Idle
system.
Recommendation:

The Idle team noted that it is not clear how this could affect the protocol itself given that it's already possible to do this with other protocols.Update:
However, we still stress that caution should be used when adding underlying protocols. One notable example of a related attack is .the yearn attack with the 3pool imbalance

QSP-38 Uninitialized state variables

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: IdleTokenGovernance.sol

Several important state variables: , , and , are not initialized anywhere.Description: token tokenDecimals isRiskAdjusted

Ensure that these variables are properly initialized.Recommendation:

Those variables are only set once though the contract. The contract is then upgraded to upon the first deploy for each new token.Update: IdleTokenV3_1 IdleTokenGovernance

QSP-39 Owner can front-run flash loaners to change loan fee

Severity: Informational

MitigatedStatus:

File(s) affected: IdleTokenGovernance.sol

The owner of the contract has the privilege of front running any end-user who calls by calling and increasing the
flash loan fee. Coupled with the fact that the can be set up to 100% inside the function, this could be detrimental to the caller if sufficient funds are
available in the caller's balance.

Description: IdleTokenGovernance flashLoan() setFlashLoanFee()
flashLoanFee setFlashLoanFee()

Recommendation:

1. We recommend that the caller of the function sends the expected flash loan fee as part of the parameter of that function. That user should check
the expected flash loan fee inside the function and should revert if it is different than expected.

flashLoan() _params
onFlashLoan()

2. The maximum value of the should be bounded to a reasonable amount, in a similar way to how the value of the is bounded inside of the
function.

flashLoanFee fee setFee()

The owner is the governance which can act only through the . Any method takes at least 5 days so it's should not be an issue.Update: timelock onlyOwner

Automated Analyses

Mythril

Mythril reported no issues.

Slither

Slither warns of several potential reentrancy issues, however as the associated external calls were to trusted contracts (either Idle contracts or underlying protocols),
we classified these as false positives.

•

Slither detects that there are "divided-before-multiplies" operations in the following functions. Re-ordering these operations may improve
precision.

• IdleTokenV3_1.sol

getAvgAPR()
avgApr = avgApr.add(ILendingProtocol(protocolWrappers[allAvailableTokens[i]]).getAPR().mul(amounts[i].mul(10 **

18).div(total)).div(10 ** 18))

•

•

:_redeemGovTokens()
share = usrBal.mul(delta).div(10 ** 18)•

feeDue = share.mul(fee).div(100000)•

•

As of commit :e09d4f5

In , several important state variables: , , and , are not initialized anywhere.• IdleTokenGovernance.sol token tokenDecimals isRiskAdjusted

Adherence to Specification

The code adheres to the specification provided, as well as the inline documentation.

Code Documentation

The code is generally well-documented. We suggest several improvements related to magic constants above in QSP-6. Additionally, we noted the following:

In , on L42 the comment "// Idle rebalancer current implementation address" does not relate to the code below.• Update: fixed. IdleTokenV3.sol

In , comments describing and should be added.• Update: fixed. IdleTokenV3.sol userAvgPrices userNoFeeQty

In , we recommend documenting that the Aave-Dai price will always be one-to-one (as per L133).• Update: fixed. IdleAave.sol

There are several spelling errors throughout: "possibile", "supplyied", "aum" (should be "sum"), "crete", "DyDc".• Update: fixed.

https://eips.ethereum.org/EIPS/eip-3156#flash-minting-external-security-considerations
https://github.com/yearn/yearn-security/blob/master/disclosures/2021-02-04.md

As of commit we noted the following:35d61ae

The comment of the function in contains the following text: “max settable is MAX_FEE constant”. However the
constant is not defined.

• Update: fixed. setFee IdleTokenV3_1 MAX_FEE

The comment of the function in contains the following text, which seems to be wrongly copied from another
function’s code comment: “max settable is MAX_FEE constant”.

• Update: fixed. setMaxUnlentPerc IdleTokenV3_1

In the comment block of , it is not clear what is meant by "This method can be delayed".• Update: fixed. IdleTokenV3_1.setAllAvailableTokensAndWrappers

In , the typo "shar" should be "share".• Update: fixed. IdleTokenV3_1.sol

In , comments should be added to the functions indicating why the government tokens get redeemed for the from-
address but not the to-address.

• Update: fixed. IdleTokenV3_1.sol transfer*

In , the comment "This method triggers a rebalance of the pools if needed" no longer applies to and
.

• Update: fixed. IdleTokenV3_1.sol mintIdleToken
redeemIdleToken

In in the function , the comment
should instead say .

• Update: fixed. IdleTokenV3_1.sol _updateUserGovIdxTransfer() // user _to should have -> shareTo +
(sharePerTokenFrom * amount / 1e18) = (balanceTo + amount) * (govTokenIdx - userIdx) / 1e18 user _from ...

As of commit , we noted the following:50da42b9

* The function declared on L104 of does not have comments to describe its input parameters and return
value. The comment that it has does not seem to reflect the actual implementation because the IDLE token address is a constant.

• Update: fixed. manualInitialize IdleTokenV3_1.sol

* The function in is missing the description of its 2nd parameter.• Update: fixed. setGovTokens IdleTokenV3_1.sol

* The function in is missing the description of its 3rd parameter .• Update: fixed. _getFee IdleTokenV3_1.sol currPrice

* Typo on L628 in : "give" -> "gives"• Update: fixed. IdleTokenV3_1.sol

As of commit we noted the following:e09d4f5

L114 in : "The fee flash borrowed" -> "The flash loan fee"• Update: fixed. IdleTokenGovernance.sol

The comments at the beginning of the and files are identical to those at the beginning of the
file. These should be adjusted for token governance:

• Update: fixed. IdleTokenGovernance.sol IdleTokenHelper.sol
IdleTokenV3_1.sol

/**
* @title: Idle Token (V3) main contract
* @summary: ERC20 that holds pooled user funds together
* Each token rapresent a share of the underlying pools
* and with each token user have the right to redeem a portion of these pools
* @author: Idle Labs Inc., idle.finance
*/

In , "redeemd" is misspelled.• Update: fixed. IdleTokenGovernance.flashLoan

In on L928: should be documented,
particularly since the first parameter is now unused in .

• Update: fixed. _redeemGovTokensFromProtocol IdleController(idleController).claimIdle(holders, holders);
claimIdle

Adherence to Best Practices

The code does not fully adhere to best practices. In particular:

There is commented out code on L78-99 of that should be removed if not needed.• Update: fixed. iERC20Fulcrum.sol

Although the user is intended to interact with the dApp through an (specifically through), the user could instead try to
directly interact with or , first transferring DAI to the contract and then attempting to . If that were the case, since the DAI transfer
and are not autonomous, a different user could scoop the minted tokens by invoking first. As an added precaution to prevent this scenario, it may be
beneficial to restrict calls to in and to only be callable from the contract.

• Update: fixed. IdleToken mintIdleToken()
IdleCompound IdleFulcrum mint()

mint() mint()
mint() IdleCompound IdleFulcrum IdleToken

On L91 of : "// q = a1 * (s1 / (s1 + x1)) * (b1 / (s1 + x)1) * o1 / k1", the "x)1" is a typo.• Update: fixed. IdleFulcrum

In , the address parameters should be checked to be non-zero with require-statements.• Update: fixed. IdleFactory.newIdleToken()

In , there should be a check that .• Update: fixed. IdlePriceCalculator.tokenPrice() currentTokensUsed.length == protocolWrappersAddresses.length

The conditional on L456 of could simply be the else-branch of the previous if-statement.• Update: fixed. IdleToken.sol

On L219 of , it is not clear what the comment "// We should save the amount one has deposited to calc interests" is referring.• Update: fixed. IdleToken.sol

On L95 of the constants and are used instead of the passed in parameters and .• Update: fixed. IdleCompound.sol 10**18 100 params[0] params[8]

In , , and , the constructors should check that the passed in addresses are non-zero.• Update: fixed. IdleCompound IdleFulcrum IdleRebalancer

In , the comments on L110 and L128 do not appear correct.• Update: fixed. IdleRebalancer.sol

Functions such as and should check for non-zero arguments.
Further, all the functions should ensure that the parameter is non-zero.

• Update: fixed. IdleToken.setProtocolWrapper() IdleFactory.setTokenOwnershipAndPauser()
setIdleToken() _idleToken

In , since should be equal to , you may as well remove that argument and use
. and the parameter are used to ensure that each allocation submitted by an off-chain bot is for the

correct lending protocol.

• IdleRebalancerV3.setAllocations() _addresses lastAmountsAddresses
lastAmountsAddresses Update: setAllocations _addresses

In , in why not just enforce length 1 for the input array? The parameter is an array in adherence with the
interface.

• IdleDyDx.sol nextSupplyRateWithParams() Update:

ILendingProtocol

L540 of should be instead of
. The reason is that once is true, there’s no need to rebalance even when the balance is not larger

than 0.

• Update: fixed. IdleTokenV3.sol if (_skipWholeRebalance || areAllocationsEqual) if (_skipWholeRebalance ||
(areAllocationsEqual && balance > 0)) areAllocationsEqual

In , since is a known token, the address could be declared as a constant instead of a constructor parameter. this approach maintains
uniformity amongst the wrapper constructors.

• IdleDSR.sol CHAI Update:

As of commit we noted the following:35d61ae

In the constructor of on L35, there is a branch instruction that will be true only for the first iteration. Executing this branch
instruction in each iteration will waste gas. Recommendation: perform the assignment for the first entry in the array outside of the loop and start the loop with :

• Update: fixed. IdleRebalancerV3_1
i = 1

lastAmounts[0] = 100000;
lastAmountsAddresses[0] = _protocolTokens[0];
for(uint256 i = 1; i < _protocolTokens.length; i++) {

The variable inside the function from should be explicitly initialized to on L98.• total setAllocations IdleRebalancerV3_1 0

Replace inline constants with named
constants:

• Update: several constants have been fixed; others have not been updated due to upgradeability of storage concerns.

The inline constant is used 2 times in .Update: fixed. 10000 IdleRebalancerV3_1•

The inline constant is used 1 time in .10000 IdleTokenV3_1•

* The inline constant is used 8 times in .Update: fixed. 100000 IdleTokenV3_1•

The inline constant is used 9 times in .Update: fixed. 10**18 IdleTokenV3_1•

In , the expression could change to be , which would make the following if-statement
unnecessary: .

• Update: fixed. IdleTokenV3_1.sol (totalRedeemd < maxUnlentBalance) <=
if (totalRedeemd > 1) {

As of commit , we noted the following:50da42b9

* Resolve and remove all TODO comments, e.g. such as those on L85, L111 and L112 in .• Update: fixed. IdleTokenV3_1.sol

* Replace the following magic numbers with named constants:• Update: fixed.

* appears several times inUpdate: fixed. 100000 IdleTokenV3_1.sol•

As of commit we noted the following:e09d4f5

Named constants should have a name which provide semantic meaning and not simply indicates the value of the constant. For example, the constant
defined in multiple files including and , should be renamed to something like: , which
conveys more semantic meaning. for the ONE_18 we prefer to keep it as is, but we will keep in mind the general advice.

• ONE_18
IdleTokenGovernance.sol IdleTokenHelper.sol IDLE_TOKEN_DECIMALS
Update from the Idle team:

Magic numbers should be replaced with named constants. For example, on L986 in . the 10**23 is
well documented and we didn't wanted to add other constant/variables.

• 10**23 IdleTokenGovernance.sol Update from the Idle team:

Avoid code clones. Favor code reuse. For example, on L704 in :
, the same computation as the one performed by the function is used. We recommend calling the

function on L704 instead. This can be done by making the function instead of .

• Update: fixed. IdleTokenGovernance.sol uint256 _flashFee =
_amount.mul(flashLoanFee).div(FULL_ALLOC); flashFee()
flashFee() public external

Provide descriptive error messages in statements. These serve a double role: code documentation and debugging helpers. All statements in
contain cryptic error messages such as: "0", "EXEC", "DONE", "LEN", "!EQ", which also do not indicate which function the error has

occurred in. We recommend changing these error messages or providing user documentation to map such error messages/codes to a human readable description.
for the require messages we kept them short to save a lot on bytecodesize; those should still be enough to debug txs, but the idea to have

error code instead could be implemented in the future.

• require require
IdleTokenGovernance.sol

Update from the Idle team:

Commented code should be removed. For example, L983-984 in .• Update: fixed. IdleTokenGovernance.sol

In , consider changing the into for better maintenance.• Update: fixed. IdleTokenGovernance.setFee 10000 FULL_ALLOC/10

should inherit the interface. we avoided to inherit from it just to be 110% sure to not
break anything given that all contracts are upgradable (even though no storage is touched).

• IdleTokenGovernance.sol IERC3156FlashLender Update from the Idle team:

In on L consider moving this entire statement into the body of to avoid unexpected
results from happening.

• Update: fixed. IdleTokenGovernance.sol L877 if-else if (supply > 0)

Consider adding reentrancy protection to the function.• Update: fixed. IdleTokenGovernance.sol.flashLoan

Test Results

Test Suite Results

**Update as of commit : some tests for previously audited contracts fail due to timeouts which influenced coverage and test results.e09d4f5

Contract: IdleBatchConverter
✓ constructor set rebalanceManager addr (98ms)
✓ cannot withdraw before first migration (841ms)
✓ single user migration (576ms)
✓ multiple user migration, single batch (881ms)
✓ multiple user migration, multiple batch (2075ms)

Contract: IdleTokenV3_1
✓ initialize set a name (39ms)
✓ initialize set a symbol (145ms)
✓ initialize set a decimals (93ms)
✓ initialize set a token (DAI) address (276ms)
✓ initialize set a rebalancer address (136ms)
✓ initialize set owner
✓ initialize set pauser (217ms)
✓ manualInitialize set stuff (1098ms)
1) _init set stuff

Events emitted during test:

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xA782e72F1D3befBd4DDC04F487ef10ab40340769 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),

to: <indexed> 0x6043A7347F46EaAcDe0ED7C98B53584823D78A90 (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xe7E39F27101a763cB55c0Fb8cf6844E8a07761f9 (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x6DdFdEdB38822099547ef7E056Fb40d4d11f3C88 (type: address),
value: 100000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x80c5d818C9a43e932dD94A0Ee161A3ebFA823be9 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x4a1CD0CF2819eF3f2B7f05BF5d02B858b9384165 (type: address),
spender: <indexed> 0x6DdFdEdB38822099547ef7E056Fb40d4d11f3C88 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x078759ffb75b3bCEBfd6bF517bd896b1AF2FaaaC (type: address),
spender: <indexed> 0x80c5d818C9a43e932dD94A0Ee161A3ebFA823be9 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xE96C48EA7F75D9957AdDAc74c707276f26eEE433 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 100000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
to: <indexed> 0x160eBf7F40d9889D834047f55e9BF5fC51e49EDF (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x035DE74e37A8f86c0C75dd6C8FF6BfBfB3c6888C (type: address),
spender: <indexed> 0x077BD1BE91206a013CcC641C7983CaA1FBad0b28 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x22B0cD56859db4E9160b860fbD2b94a5C1B61153 (type: address),
spender: <indexed> 0x1E0447b19BB6EcFdAe1e4AE1694b0C3659614e4e (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x22B0cD56859db4E9160b860fbD2b94a5C1B61153 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x22B0cD56859db4E9160b860fbD2b94a5C1B61153 (type: address),
spender: <indexed> 0xA4dfa8e902CdEDcB6C1f3D3E79AFADaBBA60F839 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x2F6e1CD70fBBfD27cD512CFCc3d980a7Af4923a3 (type: address),
spender: <indexed> 0x22B0cD56859db4E9160b860fbD2b94a5C1B61153 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x2F6e1CD70fBBfD27cD512CFCc3d980a7Af4923a3 (type: address),
spender: <indexed> 0x22B0cD56859db4E9160b860fbD2b94a5C1B61153 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

Ambiguous event, possible interpretations:
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0xaDa343Cb6820F4f5001749892f6CAA9920129F2A (type: address)

)

✓ setAllAvailableTokensAndWrappers (1301ms)
✓ allows onlyOwner to setRebalancer (489ms)
✓ allows onlyOwner to setOracleAddress (465ms)

✓ allows onlyOwner to setFeeAddress (254ms)
✓ allows onlyOwner to setFee (422ms)
✓ allows onlyOwner to setMaxUnlentPerc (374ms)
✓ calculates current tokenPrice when IdleToken supply is 0 (77ms)
✓ calculates current tokenPrice when funds are all in one (4578ms)
✓ calculates current tokenPrice when funds are all in one pool (5551ms)
✓ calculates current tokenPrice when funds are in different pools (8482ms)
✓ get all APRs from every protocol (538ms)
✓ get current avg apr of idle (with no COMP apr) (3339ms)
✓ get current avg apr of idle with COMP (1999ms)
✓ mints idle tokens (1757ms)
✓ cannot mints idle tokens when paused (710ms)
✓ does not redeem if idleToken total supply is 0 (168ms)
✓ redeems idle tokens (4349ms)
✓ redeems idle tokens using unlent pool (4193ms)
✓ redeemInterestBearingTokens (4897ms)
✓ cannot rebalance when paused (295ms)
✓ rebalances when _newAmount > 0 and only one protocol is used (1933ms)
✓ rebalances when _newAmount > 0 and only one protocol is used and no unlent pool (2627ms)
✓ rebalances and multiple protocols are used (5714ms)
✓ _amountsFromAllocations (public version)
✓ _mintWithAmounts (public version) (2138ms)
✓ _redeemAllNeeded (public version) when liquidity is available (3905ms)
✓ _redeemAllNeeded (public version) when liquidity is available and with reallocation of everything (5673ms)
✓ _redeemAllNeeded (public version) with low liquidity available (4669ms)
✓ rebalance when liquidity is availabler (7191ms)
✓ rebalance when liquidity is not available (6737ms)
✓ rebalance when liquidity is not available and no unlent perc (6399ms)
✓ rebalance when underlying tokens are in contract (ie after mint) and rebalance and idle allocations are equal (7093ms)
✓ rebalance with no new amount and allocations are equal (4505ms)
✓ rebalance when prev rebalance was not able to redeem all liquidity because a protocol has low liquidity (14144ms)
✓ calculates fee correctly when minting / redeeming and no unlent (7868ms)
✓ calculates fee correctly when minting / redeeming with unlent (9121ms)
✓ calculates fee correctly when minting multiple times and redeeming (10786ms)
✓ calculates fee correctly when minting multiple times and redeeming with different fees (14902ms)
✓ calculates fee correctly when redeeming a transferred idleToken amount (10250ms)
✓ calculates fee correctly when redeeming a transferred idleToken amount with different fees (12117ms)
✓ calculates fee correctly when redeeming a transferred idleToken amount after having previosly deposited (12842ms)
✓ calculates fee correctly when using transferFrom (7928ms)
✓ charges fee only to some part to whom previously deposited when there was not fee and deposited also when there was a fee (5093ms)
✓ charges fee only to some part to whom previously deposited when there was fee and deposited also when there was no fee (9842ms)
✓ redeemGovTokens complex test (6930ms)
✓ redeemGovTokens (6555ms)
✓ redeemGovTokens test 2 (3999ms)
✓ getGovTokensAmounts (4202ms)
✓ redeemGovTokens with fee (6699ms)
✓ redeemGovTokens on transfer to new user (5436ms)
✓ redeemGovTokens on transfer to existing user (5705ms)
✓ transfer correctly updates userAvgPrice when transferring an amount > of no fee qty (7263ms)
✓ setAllocations contract fix - setAllocations should not fail if wrappers count increased (935ms)
✓ setAllocations contract fix - setAllocations should not fail if wrappers count decreased (736ms)
✓ getGovTokens (57ms)
✓ getAllAvailableTokens (63ms)
✓ getProtocolTokenToGov (41ms)
✓ getAllocations (1858ms)
2) flashLoanFee

Events emitted during test:

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x494CA97b571716177b91B1dF6e7b2Fd1d459B7A6 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x2569C597b5a36c3441D8FD82f5CB14128f70544e (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x93C1837740373534cD6113d06cA032Ed735937DF (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x5f74946317FB10f3899Ce0261a105C99068C0903 (type: address),
value: 100000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xB53D5e67Aa9134f31E1D5dc78D22751b469e5172 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x3d743E270a1eE8332d7Ef63F63E060DEBDe43Dd4 (type: address),
spender: <indexed> 0x5f74946317FB10f3899Ce0261a105C99068C0903 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x4d3853a48744cFDE8575347E1A31e8DB90BC046D (type: address),
spender: <indexed> 0xB53D5e67Aa9134f31E1D5dc78D22751b469e5172 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x71DC02d2E39b4Dd7A7B825481002f6748A6644C0 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 100000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
to: <indexed> 0xb45ACDe13BAf56d71f54a6039F0739f06b6ac781 (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(

owner: <indexed> 0xD5AAb05CA46F0adF19f648F0Af2cd69884Ad3700 (type: address),
spender: <indexed> 0xC8CFfacf1958b163F024506B77eb50753f74129b (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x541F7171e3Ae58537dE9A1B7dDE2dA23AeAA6d25 (type: address),
spender: <indexed> 0x1E0447b19BB6EcFdAe1e4AE1694b0C3659614e4e (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x541F7171e3Ae58537dE9A1B7dDE2dA23AeAA6d25 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x541F7171e3Ae58537dE9A1B7dDE2dA23AeAA6d25 (type: address),
spender: <indexed> 0x6056248a0b3b469A16E285b69FE0D29d1D117ED4 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x440817F68675Af56c4A5460400CeAF421156a72a (type: address),
spender: <indexed> 0x541F7171e3Ae58537dE9A1B7dDE2dA23AeAA6d25 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x440817F68675Af56c4A5460400CeAF421156a72a (type: address),
spender: <indexed> 0x541F7171e3Ae58537dE9A1B7dDE2dA23AeAA6d25 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

Ambiguous event, possible interpretations:
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0xaDa343Cb6820F4f5001749892f6CAA9920129F2A (type: address)

)

✓ maxFlashLoan (5315ms)
✓ tokenPriceWithFee (8712ms)
✓ redeemIdleTokenSkipGov (11105ms)
3) executes a flash loan

Events emitted during test:

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xe78652486a6cADC80f7ccefAFCC21D1C6215BF7e (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x0d793973d0c6F0d2e4FC11cB303d7A4991757c5B (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xE82cD7b563201678755B5f9E0BdC1d35D073Ec63 (type: address),
value: 10000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xAb6261B4f9E7997f41F5965001624b8090F0A57f (type: address),
value: 100000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xBf15a702F770ea6aef3166633616Bb9B734E776a (type: address),
value: 10000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),
spender: <indexed> 0xAb6261B4f9E7997f41F5965001624b8090F0A57f (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x2811B081ecD440De1d623990b31A140c1d385927 (type: address),
spender: <indexed> 0xBf15a702F770ea6aef3166633616Bb9B734E776a (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xF0169AE7f46d8bbC705E13f82Fcc808673351206 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 100000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
to: <indexed> 0x6A306c1bECDAD43da6e51AA7B4fB6373724d1c96 (type: address),
value: 10000000000000000000000 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x84feFc456430E063EF164ae02e4f3E7B9B82F94e (type: address),
spender: <indexed> 0xCE08F45dAf36F98A0e33a61dB95A5b6F8F2D1Ce5 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x1CaCa9F10B5dC472b7b14d28904eFA29Bb117C35 (type: address),
spender: <indexed> 0x1E0447b19BB6EcFdAe1e4AE1694b0C3659614e4e (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x1CaCa9F10B5dC472b7b14d28904eFA29Bb117C35 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
value: 1000000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x1CaCa9F10B5dC472b7b14d28904eFA29Bb117C35 (type: address),
spender: <indexed> 0x6707b74355b35D990CE0c3D39fB299D6c4e19943 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

IERC20.Approval(
owner: <indexed> 0x097628F6bD655091ae13f99b4Af0DC3909A2787c (type: address),
spender: <indexed> 0x1CaCa9F10B5dC472b7b14d28904eFA29Bb117C35 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x097628F6bD655091ae13f99b4Af0DC3909A2787c (type: address),
spender: <indexed> 0x1CaCa9F10B5dC472b7b14d28904eFA29Bb117C35 (type: address),
value: 115792089237316195423570985008687907853269984665640564039457584007913129639935 (type: uint256)

)

Ownable.OwnershipTransferred(
previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

Ambiguous event, possible interpretations:
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)
* IdleTokenV3_1Mock.OwnershipTransferred(

previousOwner: <indexed> 0x00 (type: address),
newOwner: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address)

)

PauserRole.PauserAdded(
account: <indexed> 0xaDa343Cb6820F4f5001749892f6CAA9920129F2A (type: address)

)

IERC20.Transfer(
from: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
to: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
value: 1000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
spender: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 1000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
to: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 1000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
spender: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 0 (type: uint256)

)

Ambiguous event, possible interpretations:
* IdleTokenV3_1Mock.Transfer(

from: <indexed> 0x00 (type: address),
to: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
value: 1000000000000000000000 (type: uint256)

)
* IdleTokenV3_1Mock.Transfer(

from: <indexed> 0x00 (type: address),
to: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
value: 1000000000000000000000 (type: uint256)

)

IdleTokenV3_1NoConst.Referral(
_amount: 1000000000000000000000 (type: uint256),
_ref: 0x0000000000000000000000000000000000000001 (type: address)

)

IERC20.Transfer(
from: <indexed> 0x47fCbA4f604F60087f046627E9323768b4339046 (type: address),
to: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
value: 2000000000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
to: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
value: 1000000000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
spender: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 1000800000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
to: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 1000800000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
spender: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 0 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
to: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),
value: 990792000000000000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),

to: <indexed> 0xAb6261B4f9E7997f41F5965001624b8090F0A57f (type: address),
value: 990792000000000000000 (type: uint256)

)

IERC20.Approval(
owner: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),
spender: <indexed> 0xAb6261B4f9E7997f41F5965001624b8090F0A57f (type: address),
value: 115792089237316195423570985008687907853269984665640564038466792007913129639935 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0x00 (type: address),
to: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),
value: 4953960000000 (type: uint256)

)

IERC20.Transfer(
from: <indexed> 0xACc5f58366048b4107335cAb9987Cb9D3F5c703C (type: address),
to: <indexed> 0x348fD6DBc7105923Bc085021c4BAecB5E226A542 (type: address),
value: 4953960000000 (type: uint256)

)

IdleTokenV3_1NoConst.FlashLoan(
target: <indexed> 0x4F4b696dd715829E4d9BF7A565Cb2D1AFe152F55 (type: address),
initiator: <indexed> 0x7b94aC3E3AC4a2f5347E3e60616D9F1e51a1a25a (type: address),
amount: 1000000000000000000000 (type: uint256),
premium: 800000000000000000 (type: uint256)

)

✓ sets gov tokens when _newGovTokens and _protocolTokens lengths are different (645ms)

Contract: MinimalInitializableProxyFactory
✓ deploys a minimal proxy and initializes it (626ms)

Contract: IdleAave
✓ constructor set a token address (256ms)
✓ constructor set an underlying address (479ms)
✓ allows onlyOwner to setIdleToken (899ms)
✓ returns next supply rate given amount (178ms)
✓ returns next supply rate given params (counting fee) (557ms)
✓ getPriceInToken returns aToken price (67ms)
✓ getAPR returns current yearly rate (counting fee) (83ms)
✓ mint returns 0 if no tokens are presenti in this contract (80ms)
✓ mint creates aTokens and it sends them to msg.sender (1422ms)
✓ redeem creates aTokens and it sends them to msg.sender (1503ms)

Contract: IdleAaveV2
✓ constructor set a token address (457ms)
✓ constructor set an underlying address (365ms)
✓ returns next supply rate given amount (1185ms)
✓ getPriceInToken returns aToken price (136ms)
✓ getAPR returns current yearly rate (counting fee) (326ms)
✓ mint returns 0 if no tokens are present in this contract (581ms)
✓ mint creates aTokens and it sends them to msg.sender (2369ms)
✓ redeem creates aTokens and it sends them to msg.sender (3151ms)

Contract: IdleCompound
✓ constructor set a token address
✓ constructor set an underlying address
✓ allows onlyOwner to setIdleToken (877ms)
✓ allows onlyOwner to setBlocksPerYear (939ms)
✓ returns next supply rate given amount (92ms)
✓ returns next supply rate given params (counting fee) (399ms)
✓ getPriceInToken returns cToken price (1330ms)
✓ getAPR returns current yearly rate (counting fee) (991ms)
✓ mint returns 0 if no tokens are presenti in this contract (39ms)
✓ mint creates cTokens and it sends them to msg.sender (3213ms)
✓ redeem creates cTokens and it sends them to msg.sender (1990ms)

Contract: IdleCompoundETH
✓ constructor set a token address
✓ constructor set an underlying address (361ms)
✓ constructor set an underlying address (940ms)
✓ allows onlyOwner to setBlocksPerYear (2781ms)
✓ returns next supply rate given amount (3413ms)
✓ returns next supply rate given params (counting fee) (942ms)
✓ getPriceInToken returns cToken price (1372ms)
✓ getAPR returns current yearly rate (counting fee) (1650ms)
✓ mint returns 0 if no tokens are present in this contract (51ms)
✓ mint creates cTokens and it sends them to msg.sender (2947ms)
✓ redeem creates cTokens and it sends them to msg.sender (1912ms)

Contract: IdleCompoundV2
✓ constructor set a token address
✓ constructor set an underlying address (913ms)
✓ allows onlyOwner to setIdleToken (1161ms)
✓ allows onlyOwner to setBlocksPerYear (3980ms)
✓ returns next supply rate given amount (5458ms)
✓ returns next supply rate given params (counting fee) (3674ms)
✓ getPriceInToken returns cToken price (6283ms)
✓ getAPR returns current yearly rate (counting fee) (8676ms)
✓ mint returns 0 if no tokens are presenti in this contract (4051ms)
✓ mint creates cTokens and it sends them to msg.sender (12334ms)
✓ redeem creates cTokens and it sends them to msg.sender (2412ms)

Contract: IdleDSR
✓ constructor set a token address
✓ constructor set an underlying address (941ms)
✓ constructor set CHAI contract infinite allowance to spend our DAI (1488ms)
✓ constructor set an secondsInAYear (1485ms)
✓ allows onlyOwner to setIdleToken (9626ms)
✓ returns next supply rate given 0 amount (6733ms)
4) "before each" hook for "returns next supply rate given amount != 0"

Contract: IdleDyDx
5) "before each" hook for "constructor set a token address"

Contract: IdleFulcrum
✓ constructor set a token address (10385ms)
✓ constructor set a underlying address (2725ms)
✓ allows onlyOwner to setIdleToken (2652ms)
✓ returns next supply rate given amount (656ms)
✓ returns next supply rate given params (501ms)
✓ getPriceInToken returns iToken price (941ms)
✓ getAPR returns current yearly rate (counting fee ie spreadMultiplier) (2515ms)
✓ mint returns 0 if no tokens are presenti in this contract (563ms)
✓ mint creates iTokens and it sends them to msg.sender (2288ms)
✓ redeem creates iTokens and it sends them to msg.sender (3582ms)
✓ redeem reverts if not all amount is available (2791ms)

Contract: IdleFulcrumDisabled
✓ constructor set a token address (1030ms)
✓ constructor set a underlying address (364ms)
✓ allows onlyOwner to setIdleToken (3459ms)
✓ returns next supply rate given amount (2296ms)
✓ returns next supply rate given params (875ms)
✓ getPriceInToken returns iToken price (2893ms)
✓ getAPR returns current yearly rate (counting fee ie spreadMultiplier) (3033ms)
✓ mint returns 0 if no tokens are present in this contract (1512ms)
✓ mint creates iTokens and it sends them to msg.sender (6776ms)
✓ redeem creates iTokens and it sends them to msg.sender (8859ms)
✓ redeem reverts if not all amount is available (19439ms)

Contract: IdleFulcrumV2
✓ constructor set a token address (4487ms)
✓ constructor set a underlying address (7153ms)
✓ allows onlyOwner to setIdleToken (32148ms)
✓ returns next supply rate given amount (36846ms)
✓ returns next supply rate given params (55887ms)
✓ getPriceInToken returns iToken price (71970ms)
6) "before each" hook for "getAPR returns current yearly rate (counting fee ie spreadMultiplier)"

Contract: yxToken
7) "before each" hook for "constructor set a underlying address"

161 passing (1h)
7 failing

1) Contract: IdleTokenV3_1
_init set stuff:

AssertionError: expected '80' to equal '90'
+ expected - actual

-80
+90

at Context.<anonymous> (test/IdleTokenV3_1.js:329:59)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)

2) Contract: IdleTokenV3_1
flashLoanFee:

AssertionError: expected '80' to equal '90'
+ expected - actual

-80
+90

at Context.<anonymous> (test/IdleTokenV3_1.js:2520:29)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)

3) Contract: IdleTokenV3_1
executes a flash loan:

AssertionError: expected '800000000000000000' to equal '900000000000000000'
+ expected - actual

-800000000000000000
+900000000000000000

at executeFlashLoan (test/IdleTokenV3_1.js:2703:39)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at Context.<anonymous> (test/IdleTokenV3_1.js:2730:5)

4) Contract: IdleDSR
"before each" hook for "returns next supply rate given amount != 0":

Error: Timeout of 300000ms exceeded. For async tests and hooks, ensure "done()" is called; if returning a Promise, ensure it resolves. (/home/ezulkosk/audits/idle-contracts/test/wrappers/IdleDSR.js)
at listOnTimeout (internal/timers.js:554:17)
at processTimers (internal/timers.js:497:7)

5) Contract: IdleDyDx
"before each" hook for "constructor set a token address":

Error: Timeout of 300000ms exceeded. For async tests and hooks, ensure "done()" is called; if returning a Promise, ensure it resolves. (/home/ezulkosk/audits/idle-contracts/test/wrappers/IdleDyDx.js)
at listOnTimeout (internal/timers.js:554:17)
at processTimers (internal/timers.js:497:7)

6) Contract: IdleFulcrumV2
"before each" hook for "getAPR returns current yearly rate (counting fee ie spreadMultiplier)":

Error: Timeout of 300000ms exceeded. For async tests and hooks, ensure "done()" is called; if returning a Promise, ensure it resolves. (/home/ezulkosk/audits/idle-contracts/test/wrappers/IdleFulcrumV2.js)
at listOnTimeout (internal/timers.js:554:17)
at processTimers (internal/timers.js:497:7)

7) Contract: yxToken
"before each" hook for "constructor set a underlying address":

Error: Timeout of 300000ms exceeded. For async tests and hooks, ensure "done()" is called; if returning a Promise, ensure it resolves. (/home/ezulkosk/audits/idle-contracts/test/wrappers/yxToken.js)
at listOnTimeout (internal/timers.js:554:17)
at processTimers (internal/timers.js:497:7)

Code Coverage

The code is generally well covered by the tests.

Coverage of several wrappers and token contracts are reported as zero because mock files were tested instead of the primary contracts. We recommend ensuring

that the tests exercise code in the primary contracts.

Update:

**Update as of commit : some tests fail due to timeouts which influenced coverage and test results. However the two contracts in scope,

and had full coverage.

e09d4f5
IdleTokenGovernance.sol IdleTokenHelper.sol

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 8.65 4.88 9.47 8.71

GST2Consumer.sol 0 0 0 0 … 38,39,40,42

GST2ConsumerV2.sol 100 100 100 100

IdleBatchConverter.sol 92 75 80 92 47,63

IdleRebalancerV3_1.sol 38.71 16.67 25 37.5 … 106,111,116

IdleTokenGovernance.sol 0 0 0 0 … 9,1170,1175

IdleTokenHelper.sol 0 0 0 0 … 115,116,117

IdleTokenV3_1.sol 0 0 0 0 … 213,222,231

IdleViewHelper.sol 0 0 0 0 … 106,107,108

MinimalInitializableProxyFactory.sol 88.89 50 75 81.82 37,38

contracts/interfaces/ 100 100 100 100

AToken.sol 100 100 100 100

AaveInterestRateStrategy.sol 100 100 100 100

AaveInterestRateStrategyV2.sol 100 100 100 100

AaveLendingPool.sol 100 100 100 100

AaveLendingPoolCore.sol 100 100 100 100

AaveLendingPoolProvider.sol 100 100 100 100

AaveLendingPoolProviderV2.sol 100 100 100 100

AaveLendingPoolV2.sol 100 100 100 100

CERC20.sol 100 100 100 100

CETH.sol 100 100 100 100

CHAI.sol 100 100 100 100

Comptroller.sol 100 100 100 100

DataTypes.sol 100 100 100 100

DyDx.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

DyDxStructs.sol 100 100 100 100

GasToken.sol 100 100 100 100

Gauge.sol 100 100 100 100

GovernorAlpha.sol 100 100 100 100

IAToken.sol 100 100 100 100

IAdminUpgradeabilityProxy.sol 100 100 100 100

IERC20Detailed.sol 100 100 100 100

IERC20Mintable.sol 100 100 100 100

IERC3156FlashBorrower.sol 100 100 100 100

IERC3156FlashLender.sol 100 100 100 100

IGovToken.sol 100 100 100 100

IGovernorAlpha.sol 100 100 100 100

IIdleRebalancer.sol 100 100 100 100

IIdleRebalancerV3.sol 100 100 100 100

IIdleToken.sol 100 100 100 100

IIdleTokenGovernance.sol 100 100 100 100

IIdleTokenHelper.sol 100 100 100 100

IIdleTokenV3.sol 100 100 100 100

IIdleTokenV3_1.sol 100 100 100 100

IInterestSetter.sol 100 100 100 100

ILendingProtocol.sol 100 100 100 100

IProxyAdmin.sol 100 100 100 100

IStableDebtToken.sol 100 100 100 100

IUniswapV2Router02.sol 100 100 100 100

IVariableDebtToken.sol 100 100 100 100

IWETH.sol 100 100 100 100

Idle.sol 100 100 100 100

IdleController.sol 100 100 100 100

PotLike.sol 100 100 100 100

PriceOracle.sol 100 100 100 100

RealUSDC.sol 100 100 100 100

USDT.sol 100 100 100 100

UniswapExchangeInterface.sol 100 100 100 100

UniswapV2Router.sol 100 100 100 100

Vester.sol 100 100 100 100

VesterFactory.sol 100 100 100 100

WhitePaperInterestRateModel.sol 100 100 100 100

iERC20Fulcrum.sol 100 100 100 100

contracts/libraries/ 0 0 0 0

DSMath.sol 0 0 0 0 20,23,29,68

contracts/mocks/ 69.87 55.31 57.37 69.88

AaveInterestRateStrategyMockV2.sol 75 100 80 75 14

AaveStableDebtTokenMock.sol 100 100 100 100

AaveVariableDebtTokenMock.sol 100 100 100 100

CHAIMock.sol 30 0 16.67 30 … 30,31,35,36

COMPMock.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

ComptrollerMock.sol 85.71 50 60 85.71 27

DAIMock.sol 100 100 100 100

DyDxMock.sol 3.85 0 6.25 3.85 … 88,90,91,92

FlashLoanerMock.sol 100 100 100 100

ForceSend.sol 0 100 0 0 5

GasTokenMock.sol 100 100 0 100

IDLEMock.sol 0 100 0 0 11,12

IdleAaveNoConst.sol 94.12 70 90.91 94.29 196,197

IdleControllerMock.sol 83.33 50 37.5 83.33 26

IdleDSRNoConst.sol 12.9 7.14 8.33 12.5 … 159,160,164

IdleDyDxNoConst.sol 60 50 54.55 61.11 … 140,155,183

IdleTokenHelperMock.sol 40 100 50 40 16,17,18

IdleTokenHelperNoConst.sol 100 83.33 100 100

IdleTokenV3_1Mock.sol 100 50 100 100

IdleTokenV3_1NoConst.sol 91.12 70.34 92.45 90.91 … 23,957,1034

InterestSetterMock.sol 0 100 0 0 10,13

PotLikeMock.sol 0 100 0 0 … 17,20,23,26

PriceOracleMock.sol 100 100 100 100

USDCMock.sol 0 100 0 0 11,12

WETHMock.sol 65 37.5 57.14 65 … 55,56,70,71

WhitePaperMock.sol 60 100 20 60 19,22

aDAIMock.sol 100 50 100 100

aDAIWrapperMock.sol 60 100 63.64 60 24,27,30,33

aaveInterestRateStrategyMock.sol 75 100 80 75 14

aaveLendingPoolCoreMock.sol 66.67 100 66.67 66.67 25,32,39,46

aaveLendingPoolMock.sol 23.08 100 28.57 23.08 … 46,47,48,49

aaveLendingPoolMockV2.sol 100 100 100 100

aaveLendingPoolProviderMock.sol 100 100 100 100

cDAIMock.sol 100 50 93.33 100

cDAIWrapperMock.sol 84.62 50 78.57 84.62 37,59,65,68

cUSDCMock.sol 0 0 0 0 … 73,76,79,82

cUSDCWrapperMock.sol 0 0 0 0 … 77,80,86,89

cWETHMock.sol 88 50 75 88 60,63,84

iDAIMock.sol 47.06 37.5 16 47.06 … 117,124,130

iDAIWrapperMock.sol 78.95 50 78.57 78.95 34,43,49,52

idleBatchMock.sol 100 100 100 100

idleNewBatchMock.sol 100 100 100 100

yxDAIWrapperMock.sol 60 100 63.64 60 24,27,30,33

yxTokenMock.sol 85.71 50 71.43 85.71 29,33

yxTokenNoConst.sol 9.09 50 11.11 9.09 … 136,140,141

contracts/others/ 0 0 0 0

BasicMetaTransaction.sol 0 0 0 0 … 66,67,68,73

EIP712Base.sol 0 100 0 0 17,27,33,44

EIP712MetaTransaction.sol 0 0 0 0 … 65,66,71,73

contracts/tests/ 100 100 100 100

Foo.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/wrappers/ 34.1 17.24 25.89 33.99

IdleAave.sol 0 0 0 0 … 185,189,190

IdleAaveV2.sol 92.59 50 77.78 92.86 69,159

IdleCompound.sol 97.83 62.5 90.91 97.87 217

IdleCompoundETH.sol 97.56 50 90.91 97.62 204

IdleCompoundV2.sol 22.22 18.75 18.18 21.62 … 178,179,183

IdleDSR.sol 0 0 0 0 … 151,152,156

IdleDyDx.sol 0 0 0 0 … 147,162,166

IdleFulcrum.sol 0 0 0 0 … 145,146,150

IdleFulcrumDisabled.sol 0 0 0 0 … 137,138,142

IdleFulcrumV2.sol 0 0 0 0 … 137,138,142

yxToken.sol 0 0 0 0 … 136,140,141

All files 44.84 29.2 42.39 44.6

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

cb50e8e3e594a81dc83e0cf49f617941a18d1af83d386943d1f20fa0dd200c86 ./contracts/GST2Consumer.sol

6341f0c902b0651922968bac1b1e5b8e797489faf7ef5e763a544a450d9532cc ./contracts/GST2ConsumerV2.sol

438cdf1986f293e4450935308634df9f2c3e46f962a40941b2e841f3a0f6bf26 ./contracts/IdleBatchConverter.sol

56b6894d0659ffa4f19047613503696b87e31d342055b7a9617f62d6ed4e3e95 ./contracts/IdleRebalancerV3_1.sol

b1ad8f1cb504167d4922fb1815f407d1f4e3c01ae0fc87c08a4131339ad2d0ec ./contracts/IdleTokenGovernance.sol

27b8f77d310a8ca4e3c2ee7550c5aab56e2b904896a1e4138e64b5945ba6a817 ./contracts/IdleTokenHelper.sol

21feafdfe57a4713f5c4a230740257949b2bbf691a39c1b3ca3e368e30dbed01 ./contracts/IdleTokenV3_1.sol

600dfee96cf6c6fd38a218fb27928f5e6adf430616cf678ec9d3cd0479019076 ./contracts/IdleViewHelper.sol

ffd751a32d9fb50ae7fd3b1724dc30556d83c33367b28a1ee66e4f56af9d65e7 ./contracts/Migrations.sol

09801d7f5658c723d314cf03a0878c8a84edfd9e3dc354d88e16e5ca5d5d1694 ./contracts/MinimalInitializableProxyFactory.sol

ae9c56710189a2541ee0164e4a01a0728e03aebdb4c1e60076f81fc343a5ae81 ./contracts/wrappers/IdleAave.sol

14ad3f5658df7c5dfc4ca3a49ba2063d859024774ab00975d1eb24fc46611c6a ./contracts/wrappers/IdleAaveV2.sol

042c9a2781853d5ed66b3d8d6201a973d5071230ca4fa23b7d06e82fd2f3f493 ./contracts/wrappers/IdleCompound.sol

8edc23b10d723319b7e1828c9e2ee2d42bbd85127b30820f581421354a1f78e3 ./contracts/wrappers/IdleCompoundETH.sol

516b144e5fb9f08b65235d21aa89705741d2e269ca5f170bc37cbb07cb0f87cd ./contracts/wrappers/IdleCompoundV2.sol

dd032d7fcc9143dd79025fc615d28b7c382eafe24b0fe4e0fdfd8f9b723a223c ./contracts/wrappers/IdleDSR.sol

de5c8e471accbb077ad6793e1c60683e67bb1575f415390d7e71b97b8fbeaf66 ./contracts/wrappers/IdleDyDx.sol

452c9e06ec3a218229259b20a0ae26ac140d10e6ee3c6f3c8e1a1ee542732647 ./contracts/wrappers/IdleFulcrum.sol

ed3e0a41a28490cbef139927143bf85ea776dcba90fdf0d88b652689e949f2f0 ./contracts/wrappers/IdleFulcrumDisabled.sol

e9a689cfb6fb46cdf3644e9e52ec9e3f2576da8724439d8d05e7845724cbde60 ./contracts/wrappers/IdleFulcrumV2.sol

fe50d4a334e03b70e55a8d159570070238e2a16d2213f2ae997d80cf398fe6b1 ./contracts/wrappers/yxToken.sol

1cab6221e40bebe7cfc8eb26bb049a6406b1c6d27b244fe33433e2ada194d306 ./contracts/tests/Foo.sol

1d53dfc9360c4975560a07e99bcb5c8882e0fc00a3c5fe23064631f051392356 ./contracts/others/BasicMetaTransaction.sol

304b03c570cb413afb28ed850aed112f0ef28b01850339e5c46f6479143873b7 ./contracts/others/EIP712Base.sol

513597938e062f74be0751429228d3b77d4a2e0fdee04510be9a23defd8c2ffc ./contracts/others/EIP712MetaTransaction.sol

7690baa9f464e5b9005b5ac3f32f68ad79f01ff69a57f3a96d58fd2f598dc67e ./contracts/mocks/aaveInterestRateStrategyMock.sol

95c589f05e2a9e3ab360dad60a39491a62489896b044ada67b1e24533b7e044f ./contracts/mocks/AaveInterestRateStrategyMockV2.sol

46b1695469eec18088c22842468a76cae83c429e135792e58af3cdd4f8684f97 ./contracts/mocks/aaveLendingPoolCoreMock.sol

4d6700a12609c826a559cf9111ec12c665e0c5a225027bb541c08cdea26b160e ./contracts/mocks/aaveLendingPoolMock.sol

e3e1e2656454004893c17c15c09aca9952b20bbdc53bb1de57496ab30f00b062 ./contracts/mocks/aaveLendingPoolMockV2.sol

a7ceeafde8ac95c36bb1d1756521a686d225b1e62a8ce7510d302b513f28e85d ./contracts/mocks/aaveLendingPoolProviderMock.sol

d61d046e28fc88d36fc490e86286e2f3e269718bcdc8b5615f7aef03307e37e4 ./contracts/mocks/AaveStableDebtTokenMock.sol

183cb180870733fa51cdc382cec5aa306bac91d14483e8d53581bdf121436279 ./contracts/mocks/AaveVariableDebtTokenMock.sol

084e2dee6aad484af4d2104331dd6c262815bc478fbb9a346cf43367482ed459 ./contracts/mocks/aDAIMock.sol

ebf4a51e421e210584e40e951f67efc1d8e5ee18584697d2dc05cd9887a3a02c ./contracts/mocks/aDAIWrapperMock.sol

d08719e992bb6088cbc198b50c4e1a0d5e506f126b4787b7fd484cb267500c32 ./contracts/mocks/cDAIMock.sol

78fbeef0d9d0c111d5252bd9da7fc5841b8ecc04002e834aaa304b130519988c ./contracts/mocks/cDAIWrapperMock.sol

f93b6b4f22b3eff48fa00a89f8ec8ef9b8dbc4f14ad79c39f00161233b7d1d18 ./contracts/mocks/CHAIMock.sol

ff3d0f6903ab36c587f9a6f56f682068e23278843b9a6775d85d984760a3b4d1 ./contracts/mocks/COMPMock.sol

693b69819db0b74712299c245bbb6d574aa1fa24cc7183153ad5f72b5908562d ./contracts/mocks/ComptrollerMock.sol

a9f670d48a6f1b757429f3bcb5e9e9682b88b87a73667ed1850e822a588f65c7 ./contracts/mocks/cUSDCMock.sol

cae54665d5c87a410b103621a8d92fb9fc0465f4ffcff2a5eea1055c0220b30e ./contracts/mocks/cUSDCWrapperMock.sol

49cd31818be45e5c50c1b414f979ebe121ee4539619ced940c00c99e65551a32 ./contracts/mocks/cWETHMock.sol

cebe2c9dadad843bc01fe5e188773248e779e061fb72d11c34eed9a3de0ac5ff ./contracts/mocks/DAIMock.sol

a14f262292dee9a5c072f40586ad1e98645efbefbfb1bb28fadd9852f2ea21e5 ./contracts/mocks/DyDxMock.sol

9f6fd266d87523ce293ab6be43c2f4707a88330d6d15ca5ae3334fb0298d9a4e ./contracts/mocks/FlashLoanerMock.sol

226302828e1e6801e388a780a7e1f5ec7c6d00f2a21d5b23e395b6fa03b5ac0e ./contracts/mocks/ForceSend.sol

c908417ccf62bf91587e749e21cbf25106c32e82d8d2df7f2ee4a1de5d6635c8 ./contracts/mocks/GasTokenMock.sol

6a7a8776097cb1874b7408e849a5cfc31acb46fede6b787ecf27b14303626587 ./contracts/mocks/iDAIMock.sol

fa63babd02cabca4b03ed47de2e46c7d21a287325a7a41c8b182e92f2670cbd9 ./contracts/mocks/iDAIWrapperMock.sol

20f1ed2a6763a04fca95f4618fb5807a5b7b205b5621cb217587693e33124770 ./contracts/mocks/IdleAaveNoConst.sol

eaf098d90370f307503d822006d69e4060a45acdd22863570e5f01df6f85b876 ./contracts/mocks/idleBatchMock.sol

4e47686c53566da4cf7d3429df9a737af1a8b547ca0eb1098f3a576a23f410fc ./contracts/mocks/IdleControllerMock.sol

275f276629c16be57e3297e80093ee68d0584cbffac7cb6a0fd4a0d6d22577d7 ./contracts/mocks/IdleDSRNoConst.sol

ad7b05f3e17e363ed602d74e0c2175fdbba25384f4a4e2f363cdb5943893f5b5 ./contracts/mocks/IdleDyDxNoConst.sol

c9acfdaea6dde4913dc686b281a199eaafa3822f6becd2f8911d96555d947e2e ./contracts/mocks/IDLEMock.sol

d325c5366317657684d220d19c65379a6b594aa11bbdb1b4d0ad8ed570d8f286 ./contracts/mocks/idleNewBatchMock.sol

e064f2ac2b3fe18eca14cb83203a3b903df28d4663cd569f919f20d0d610f39b ./contracts/mocks/IdleTokenHelperMock.sol

de425dd525723e6b7239210cdcbb20e51a6e1e2813a6c01f2bdeed073c56ecc0 ./contracts/mocks/IdleTokenHelperNoConst.sol

af86c5013b5b82039049e573bf8a41874f8f230cd0ad11f097b1fcd9f47effec ./contracts/mocks/IdleTokenV3_1Mock.sol

5cf7090f5710828c899450b35e3baf77a87b0ea8d34ce0b4723f1b765d2643fe ./contracts/mocks/IdleTokenV3_1NoConst.sol

615bdc68fb899fc4589085acfe8216e3ca53ce149036bc426fcc05be411b3015 ./contracts/mocks/InterestSetterMock.sol

e4b8ae54d5bdcbd3537223fb96f2cdbdfe1861064ff22f9005911f04b950391e ./contracts/mocks/PotLikeMock.sol

31b93924b10ab3642fa618dc9275f9f3ac138795648aa92346a102e7819dc40b ./contracts/mocks/PriceOracleMock.sol

fcc07f5f3da7ad6330e5876745bb8040e260dc958bdea8dc41585fe2e0e4df23 ./contracts/mocks/USDCMock.sol

764e043e89425d5541862af2a927be5d468071a12cd0a59c2f9f40704f8b302b ./contracts/mocks/WETHMock.sol

88b2f7f39a492552df9a8162ca4963211a5db6972aa5abc13836524f9681ff17 ./contracts/mocks/WhitePaperMock.sol

7e79e9711c53374379691defac075de72a56f37e3d07e27ff7ac8ffda820b23a ./contracts/mocks/yxDAIWrapperMock.sol

1b194f50c9528c8e77434c765a94a8f97040153633c39c968a124453646bbee3 ./contracts/mocks/yxTokenMock.sol

5f91d951ded04bc114597b848acf070b2d9781dd2b283f17c0f5a697834d5f4e ./contracts/mocks/yxTokenNoConst.sol

36e8d3f881312f1575c1d73feed068768587ebef76e19a8c55e80c7d5ecf548c ./contracts/libraries/DSMath.sol

7947bc218c29bef6b9311ec3b0ba5883c6067d6fa191bcaeddaae400d3783aea ./contracts/interfaces/AaveInterestRateStrategy.sol

fb453193300a1ea84d35436536ee01b7cef2ad7eadd1829c57aa7840ae4994ba ./contracts/interfaces/AaveInterestRateStrategyV2.sol

c1b64db188c22aa2f8dd8f8fc664f163b53071cdd98c85d67ab5888acf0d63fb ./contracts/interfaces/AaveLendingPool.sol

d2ba6c9c8f02946bf98e53295e84b29c334bba2a3b9a755e78342e2621522419 ./contracts/interfaces/AaveLendingPoolCore.sol

1d3c1c096be8bbfb05392fd97c77d9d957dbb2f47b2a8d978da502e8bc8398e6 ./contracts/interfaces/AaveLendingPoolProvider.sol

77851eebeb0039af84466e76ff5c2067de12e3ba4e28983652e706da8691f5e0 ./contracts/interfaces/AaveLendingPoolProviderV2.sol

e6112b547d55f40705ef0d633707350ac4f391a165dd11438b7dcf31386c1061 ./contracts/interfaces/AaveLendingPoolV2.sol

42f8369de2db5026fbf056992ca219645d98f9a623274784ea5d1a779c92ad26 ./contracts/interfaces/AToken.sol

f22f7508591b8b41a13511c01e336416a772dda310b29d6df88de1b5b8d06854 ./contracts/interfaces/CERC20.sol

e4d92cd3688939509570b286100fd6d65b16eb2427b321af5f2bb50d87732e7d ./contracts/interfaces/CETH.sol

206de751b0486eaadccdf76fa95e2d5978be9ea190f1561f12c3413cfff16969 ./contracts/interfaces/CHAI.sol

d36649910a636ee1da75d0f33d71f5873b83b169a6d86c06fcdc6412c8e9828d ./contracts/interfaces/Comptroller.sol

dba1842d6936dcf06e65aff0ea9d10d7b2e987e531774d58488503d6f9b23f35 ./contracts/interfaces/DataTypes.sol

f9282a625866967b49f511894146d3bc8fe6a96f0467eeb39ff6a2df477d98c7 ./contracts/interfaces/DyDx.sol

9ddd041518883d7c8cf7e923c7446ef580bc43aa54db69cd2fd23f4b47be4649 ./contracts/interfaces/DyDxStructs.sol

c3f95d558bd27571e06cffd518760bfbcbcbc3df68c05e8db55516de38774229 ./contracts/interfaces/GasToken.sol

d3a6cb8c8bcf3312f169da866ae7b1c2aa430861e8c9796410fcaf8a31a65cd1 ./contracts/interfaces/Gauge.sol

07806c507c46dcecbac86a1b3d7e19ad350cce4912ae77b9bb2c97ee888ebbeb ./contracts/interfaces/GovernorAlpha.sol

1464b7d71602f83ad4ee283395aeea50951605765c46df2de968ba26b18b87b3 ./contracts/interfaces/IAdminUpgradeabilityProxy.sol

03fc731b1fba6162bb7bdb2041ed2e077f90a793e8f3f7c1e1d174dd24435473 ./contracts/interfaces/IAToken.sol

ff45c284cad657ecd2e97de49e6385ae8dad5acab43f66fcc249f6fb0b652da5 ./contracts/interfaces/Idle.sol

b13da4dcaee4a1cc3482baa39154b734a1d6c4d2e172035bf870e33b08043743 ./contracts/interfaces/IdleController.sol

65660b683ee4701fc7a1307bef629d25c14486c6a313f1eb7c9b08248788dce3 ./contracts/interfaces/IERC20Detailed.sol

6356b102e82c77f72c68597645d8d31cc5ea05a78af3e88e48b645b7b6e419ba ./contracts/interfaces/iERC20Fulcrum.sol

b42481fd402344cedc5ab082aa415bc1df1f3082cd316dccc05ca00d1be4fd86 ./contracts/interfaces/IERC20Mintable.sol

7f4694524424d65aa60d313b51e931f8e96a2e450610afcf54978480d50d3e29 ./contracts/interfaces/IERC3156FlashBorrower.sol

99cda61bea419a5e9c66fa8659b0a5610694d50650ea6baf3bf15c72a78d3866 ./contracts/interfaces/IERC3156FlashLender.sol

c3144402bb42ded093e2d021d25589fb325bb3ea852eca20bfdcfea45e93d0b2 ./contracts/interfaces/IGovernorAlpha.sol

0252f8f3886f5ac56a520bb36ddffe1f791bd162955b96905f648adf1b6891fa ./contracts/interfaces/IGovToken.sol

587c4202daafdb6616abf906031e7e1bd1535a4d7738389b540f271b5b46292d ./contracts/interfaces/IIdleRebalancer.sol

db81c6219c2a4cb02215a7093173b8a0c999833298490009b157b78007bcd110 ./contracts/interfaces/IIdleRebalancerV3.sol

f14bf430e2e9ef517d54400de1b6eac9cee26c4a6ba2d5ff1ebc8791512c5ec8 ./contracts/interfaces/IIdleToken.sol

7065f6cfbde2b05f345557a63ac932a48145803119c1df2d6f0d9d8780ab77de ./contracts/interfaces/IIdleTokenGovernance.sol

9cb8659a552afc12fbbe93989d81b7f3bb688357a3750f709d87708db96310f3 ./contracts/interfaces/IIdleTokenHelper.sol

106537974d5c921e415642cd9466409d9e13f0b7ef6d1cab498dd1aac18ef024 ./contracts/interfaces/IIdleTokenV3.sol

30d9d400c05924dd61b8c647c5b563d088aec977db4b5acacf42170f9b30c384 ./contracts/interfaces/IIdleTokenV3_1.sol

afd940f2f0f9aa927a3418f01e218962f3033aae5a468b5302b3d4f5b309d366 ./contracts/interfaces/IInterestSetter.sol

f3735c051754aaf8d305c94099640d58131454f2c63b2db01cfa27e5aef8810f ./contracts/interfaces/ILendingProtocol.sol

bb53d48dc5a9bdfd81792141702186fd14ce628b226e317f40e5df29425d8019 ./contracts/interfaces/IProxyAdmin.sol

69fd7ce938e4f8958b97e54f2b2bf975c5346878cb2f916f26bb917152402e7d ./contracts/interfaces/IStableDebtToken.sol

eb5736ae93253b39d8c1564eee8339ea63d08cd8b546bcd76c8fd2b39ab73c17 ./contracts/interfaces/IUniswapV2Router02.sol

5b10cf8281631b3377df2542c8b7da2a76b7b3fbfeaffb8e574827e953724d8a ./contracts/interfaces/IVariableDebtToken.sol

a9509ad47c77c28c299f6f2b64f3497fa5c32ce6158599edfe55582248236f19 ./contracts/interfaces/IWETH.sol

9f37dbe5f1e0698275b4c047a21f645244601a9545f7ba20279127d01b274a28 ./contracts/interfaces/PotLike.sol

7030da4cd7de8e1a0481c27db004afacd0133a6bb6427c5d7da8457f0b991286 ./contracts/interfaces/PriceOracle.sol

f750845cd5ffdfce07c8a52138b6c0a59f23944218734557c9f0275e2b0aaa8e ./contracts/interfaces/RealUSDC.sol

50099dc807351b99408b1df47a6cdd331823641f4b1fd252a579313e52a494de ./contracts/interfaces/UniswapExchangeInterface.sol

73465ebd1211ca589d042b95bf7ae2330c8022219e93c1a70d0a2d83f6bea779 ./contracts/interfaces/UniswapV2Router.sol

b4b1a5bbdba60b0b99e1e6f6311d5d899226af1f72781f5015f19d3bb910a629 ./contracts/interfaces/USDT.sol

690589027c7fa15807705073215e5c1725ace965b209ae52604b41b955051952 ./contracts/interfaces/Vester.sol

7ac6b52da475b0e86f18cd9b1ebbbecc31a047d2ca321db8ca8b22e73f6efe1c ./contracts/interfaces/VesterFactory.sol

db96470d5844ab22a99451dee8baced828f0a8614f5e1c4a2e7c21848f978a7e ./contracts/interfaces/WhitePaperInterestRateModel.sol

Tests

dc6239773c8bb05e00358c8ba93d3755c63d43f4ea2f2f5969fc9f86a45102b0 ./test/IdleBatchConverter.js

a7878d3cf4eaec576594be595e00948b8757dc65072ef514c7528a2293a159b1 ./test/IdleTokenV3_1.js

3f0b64e8b21a36f8ca0e268a739b76da6eddcf50dcf197ce2506fff3c04fb0fb ./test/MinimalInitializableProxyFactoryTest.js

011e9182887a9c4a67502cb272c759fd8d81f18ae8b87380e3bbb4ce21b3d12b ./test/wrappers/IdleAave.js

9d76ca81064fcb3a16584b81cc7d2559b2dda58abcece6ccd338e97d871a04d8 ./test/wrappers/IdleAaveV2.js

b1c156694d1fe3073ee8181d0f5fe637d8f37e4a93c53d7ee3333586ff1625cd ./test/wrappers/IdleCompound.js

2ae10a4aef755303aafee42c7ae6028cb2d137c5c136f6423c8e842f9a7d3f25 ./test/wrappers/IdleCompoundETH.js

f6a29c23b832b3f7226ca0e7b8b9060bc28bc3bf1601b4364ad7e06685cb6843 ./test/wrappers/IdleCompoundV2.js

b822cd7c853d87e409587c2598357a4a19279e9a6cfe6d6a6b461d7cdd07496c ./test/wrappers/IdleDSR.js

cce2f1e6b0b6b4dc24d929878a9161108072720c09bc2846bb7e3dfc7b467197 ./test/wrappers/IdleDyDx.js

1a45883869155b57c725857fa7461127b3ecb723425edaec77c476d0fab270b8 ./test/wrappers/IdleFulcrum.js

8b71421f1664acfb5eb63da9d61ba508bbec76f69d3d7e36b05512d868470490 ./test/wrappers/IdleFulcrumDisabled.js

00de4f2b89491398082fcbfb8a7db30b63b2da481248aee8ee810a5417d27cd9 ./test/wrappers/IdleFulcrumV2.js

c7b7b4755e1faf8ae58a1014665a092de3d89fd4181a288571f723ed795bc7e8 ./test/wrappers/yxToken.js

Changelog

2019-12-13 - Initial report•

2019-12-19 - Revised report based on commit• 9732bc

2020-01-30 - Revised report based on commit• c6fa71c

2020-01-30 - Revised report based on commit• bcb6f09

2020-04-09 - Revised report based on commit• a71a706

2020-04-22 - Revised report based on commit• 64f22d0

2020-04-24 - Revised report based on commit• fefd01d

2020-04-27 - Revised report based on commit• 7d3b7e4

2020-05-15 - Revised report based on commit• 93d3429

2020-05-18 - Revised report based on commit• f9c02d1

2020-08-04 - Revised report based on commit• 338ec24

2020-08-12 - Revised report based on commit• 1b40261

2020-10-29 - Revised report based on commit• bd40915

2021-04-16 - Revised report based on commit• e09d4f5

2021-04-22 - Revised report based on commit• b5fb299

https://github.com/bugduino/idle-contracts/commit/9732bcbb701c641e50d51c5e73dd3603b2a7bc80
https://github.com/bugduino/idle-contracts/commit/c6fa71c236af62169c01ef47ff03ce431011e6b1
https://github.com/bugduino/idle-contracts/commit/bcb6f097e6614bfa5aa9be3cb4dacb98d73992e7
https://github.com/bugduino/idle-contracts-private/commit/a71a706501ef2984412fa63855c233e709380524
https://github.com/bugduino/idle-contracts-private/commit/64f22d0e41bafe4096dc7757b69535ab09951c2f
https://github.com/bugduino/idle-contracts-private/commit/fefd01da53ef49f63257ef85ea35399d8cb91368
https://github.com/bugduino/idle-contracts-private/commit/7d3b7e4ff2f9d3f1a6eb3359ec48f51408cbb67a
https://github.com/bugduino/idle-contracts-private/commit/93d342952a96ccf43a8216caae6a1a258f2f181f
https://github.com/bugduino/idle-contracts-private/commit/f9c02d136197d3b251952c218e7571c8aa113e22
https://github.com/bugduino/idle-contracts-private/commit/338ec241934cfa0c556cbf78385e05832239bbfa
https://github.com/bugduino/idle-contracts-private/commit/1b402616465de49cb3299da4e87ac083d323ca9b
https://github.com/bugduino/idle-contracts-private/commit/bd409159972d5e6bb718af75015d20311f9e86d2
https://github.com/Idle-Labs/idle-contracts/commit/e09d4f52af1aea9e4d673c14d101d09214591600
https://github.com/Idle-Labs/idle-contracts/commit/b5fb299fafb34a84a120f8d7c77895f6f9de5840

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Idle Finance Audit

