
August 31st 2021 — Quantstamp Verified

Badger ibBTC
This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type DeFi

Auditors Jake Goh Si Yuan, Senior Security Researcher
Mohsen Ahmadvand, Senior Research Engineer

Timeline 2021-06-08 through 2021-08-05

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Documentation Quality Low

Test Quality Low

Source Code
Repository Commit

ibBTC 6860dd8

ibBTC Reaudit 3cad810

Total Issues 13 (3 Resolved)

High Risk Issues 1 (0 Resolved)

Medium Risk Issues 5 (2 Resolved)

Low Risk Issues 2 (1 Resolved)

Informational Risk Issues 3 (0 Resolved)

Undetermined Risk Issues 2 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/defidollar/ibBTC
https://github.com/defidollar/ibbtc/tree/6860dd87d8ea02e3fc5c180d23876151b20ba35c
https://github.com/defidollar/ibBTC
https://github.com/defidollar/ibbtc/tree/3cad810acb2d153dc4e4d9cde2ed131af1cc1fcf

Summary of Findings

We have performed an audit and discovered 13 issues, ranging from High to Undetermined. The distribution of severity is detailed both above and below this text. In this audit, we found
that the implicit trust towards external contracts to be problematic, and recommend that the ibBTC team consider the security model of "trust, but verify" whenever handling any external
interactions. We have also found the documentation to be imprecise and lacking in some areas, which we have noted in one of the issues. There was also a lack of tests for the contracts,
and we heavily recommend raising the coverage level to the minimum of 100%. We urge the ibBTC team to strongly consider the issues and the recommendations, and make the
appropriate fixes and/or official acknowledgements about it, in a speedy manner, especially as it seems that the system has already been launched before the audit has taken place.

ID Description Severity Status

QSP-1 Implicit unbounded trust in peaks High Acknowledged

QSP-2 Unbounded ing when is not setmint guestList Medium Acknowledged

QSP-3 Peaks may be duplicated and cause to miscounttotalSystemAssets Medium Fixed

QSP-4 Funds may be locked by peak extinction Medium Mitigated

QSP-5 may never be switched in current implementationCore Medium Acknowledged

QSP-6 Lack of validation for arbitrary input may lead to stolen token credittoken Medium Acknowledged

QSP-7 Setter functions may set to same variables Low Acknowledged

QSP-8 Potential precision loss in division Low Fixed

QSP-9 Privileged Roles and Ownership Informational Acknowledged

QSP-10 Misleading usage of scaled, and under-informative function names Informational Acknowledged

QSP-11 Magic numbers Informational Acknowledged

QSP-12 Dormant peaks may redeem Undetermined Acknowledged

QSP-13 Cross peak withdrawal is allowed Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.0• Slither

https://github.com/crytic/slither

Steps taken to run the tools:

Installed the Slither tool: Run Slither from the project directory:pip install slither-analyzer slither .

Findings

QSP-1 Implicit unbounded trust in peaks

Severity: High Risk

AcknowledgedStatus:

File(s) affected: Core.sol

The current flow in the essential external functions of and works by having most of the critical operations being performed and started in the peak contracts. The
operations include the storing and collection/return of external tokens, retrieval of exchange rates, calculation of the actual exchange, and the emitting of event. The interaction with the
contract comes in the form of the peak contracts telling it how many to or , and the former following it without limits or any form of verification. Note also that the peak
contracts may also and therefore for any arbitrary account, even those that are not associated with it.

Description: mint redeem
Core

bBTC mint redeem
redeem burn

This is a security model that relies on the peak contracts to be secure and correct. Given the definition of a peak in the to be
, we find that this security model is too trusting, and any malicious peak may either ruin the economics through excessive minting or loss of reputation from arbitrary ing.

README.md any third party integration in the
protocol burn

There should be an accounting system within the contract that retains information about the peak and associated users, that can be verified internally from the
perspective. Likewise, there should be a governance set limit to how many each peak contract is able to mint at any time.
Recommendation: Core Core

bBTC
There should also be a consideration to whether it might be more secure to have the collection and verification of funds done at the level.Core

From the team: "There can't be malicious peaks. Every peak is a trusted contract; not a random 3rd party integration that anyone can plug into the system. It's as simple as breaking
the core logic of the system into several contracts instead of having a huge single contract."
Update:

QSP-2 Unbounded ing when is not setmint guestList

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: Core.sol

The function only validates for whether or not to to a particular if . The other access control present is the check
for whether . This means that if , an active peak can mint any arbitrary amounts of . Given
that peaks are considered to be third party integrations, caution should be given to unbounded powers like this.

Description: mint mint account address(guestList) != address(0)
peaks[msg.sender] == PeakState.Active address(guestList) == address(0) bBTC

Either create an alternate access control method when and/or cap the total amount that can be minted by a peak.Recommendation: address(guestList) != address(0)

From the team: "This is the intended behaviour"Update:

QSP-3 Peaks may be duplicated and cause to miscounttotalSystemAssets

Severity: Medium Risk

FixedStatus:

Peaks are added to the contract by , which first validates for whether L155, before adding it to
, setting the status at to and firing an event.
Description: Core whitelistPeak peaks[peak] == PeakState.Extinct peakAddresses

peaks[peak] PeakState.Active
The status of peaks can be adjusted at , which allows for any arbitrary state to be set as long as the current status is not . This means that it is possible
to have whitelisted a peak, then set its status to after, then whitelist the same peak again, ad infinitum. Given that the peak address is not removed from

when the peak is set to , nor does it perform an existence check when adding it, this means that duplicates can happen. This means that
, which relies on iterating through all , will count the duplicates and produce a miscounted value.

setPeakStatus PeakState.Extinct
PeakState.Extinct

peakAddresses PeakState.Extinct
totalSystemAssets peakAddresses

Do not allow peaks to be set to and allow for deactivation of peaks to be set to instead. Otherwise, remove peak address from
when set to

Recommendation: PeakState.Extinct PeakState.Dormant
peakAddresses PeakState.Extinct

Check added to assert that peak is not already whitelisted in order to avoid duplicates.Update:

QSP-4 Funds may be locked by peak extinction

Severity: Medium Risk

MitigatedStatus:

File(s) affected: Core.sol

The function prevents extinct peaks from utilizing it. The governor may set a peak to extinct status without ensuring that all of the associated funds have already been
ed. This has the unfortunate effect of causing accounting issues as the funds will also be removed from the calculation, which is essential for a lot of important

calculations. Whilst it may be possible to again to bring it back to a non extinct status so that the funds can be retrieved, it will result in the other issue (QSP-3) being
activated.

Description: redeem
redeem totalSystemAssets

whitelistPeak

There are a couple of ways this can be resolved, depending on what the actual definition of the extinct status is, which is not too clear at this point of the audit as there is no
specification about it. The requirement can be removed from , or setting a peak status to extinct could require that there are no existing funds still able, or one can simply remove
the ability for peaks to be set to extinct.

Recommendation:
redeem redeem

The team added a validation that checked for whether the amount remaining is less than , or "near-0" as described.Update: 1e15

QSP-5 may never be switched in current implementationCore

Severity: Medium Risk

AcknowledgedStatus:

,File(s) affected: bBTC.sol Core.sol

In the contract, there is a method which is designed to be used to upgrade and switch contracts. This method is protected by the modifier
which allows only the existing contract to call it. However, given that the current implementation does not have any method that calls , it is likely that this method will
never be callable, therefore rendering it useless.

Description: bBTC switchCore Core onlyCore
Core Core switchCore

Set up a method in that targets this method in such that it is not rendered ineffectual.Recommendation: Core bBTC

From the team: "Intended behavior".Update:

QSP-6 Lack of validation for arbitrary input may lead to stolen token credittoken

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: Zap.sol

Currently in , the method does not check for whether the input are the desired or addresses. Therefore, given that the only check for is in the
form of a specified amount, it is possible to set to some arbitrary worthless token address to steal any underlying or on the contract.
Description: Zap mint token wBTC renBTC token

safeTransferFrom token wBTC renBTC Zap

Validate that the input token is either in the expected or address.Recommendation: renBTC wBTC

From the team: "Given that zap contract isn’t expected to hold funds, we are ok with users being able to steal it, if some1 sends funds to zap. Doesn't affect the core system."Update:

QSP-7 Setter functions may set to same variables

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: Guestlist.sol

There are some setter functions for the contracts involved that does not compare the incoming parameter to the current state variable. This may result in a misleading event emitted
or successful result being returned, and may confuse components monitoring for these changes.
Description:

The following examples were spotted:

1. In Guestlist.sol, does not validate for whether has changed.setGuestRoot guestRoot_

2. In Guestlist.sol, does not validate for whether has changed.setUserDepositCap cap_

3. In Guestlist.sol, does not validate for whether has changed.setTotalDepositCap cap_

Validate for whether the incoming parameter is equal to the current state variable, and if so, revert the transaction.Recommendation:

From the team: "Out of scope for audit.".Update:
This file was actually in scope as per the original agreement, but after discussions with the team, they have decided to consider it removed.

QSP-8 Potential precision loss in division

Severity: Low Risk

FixedStatus:

In the method, a division of is performed before the next division of . This is probably done for the purpose of reducing the
decimals to an intended . However, given that the useful work is done in , it would make more sense for the purpose of information preservation to perform that first,
before

Description: _btcTobyvWBTC 1e20 byvWBTC.pricePerShare
8 byvWBTC.pricePerShare

1e20

Switch the order of the operations such that comes first, then .Recommendation: byvWBTC.pricePerShare 1e20

Recommendation adhered to.Update:

QSP-9 Privileged Roles and Ownership

Severity: Informational

AcknowledgedStatus:

,File(s) affected: GuestList.sol Core.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract. In this audit, we note the following
cases:
Description: owner

1. In GuestList.sol, the is able to set the either to to completely remove any need for proof verification, or change it to anything else to invalidate all the
previously working invitation proofs.

owner guestRoot 0

2. In GuestList.sol, the is able to set the and/or to or low enough such that any further user deposit will not be allowed.owner userDepositCap totalDepositCap 0

3. In Core.sol, the is able to set any existing peak to the extinct state arbitrarily, therefore removing it from and heavily affecting the return for
the token.

owner totalSystemAssets
bBTC

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

No updates were given by the team besides the Acknowledged status.Update:

QSP-10 Misleading usage of scaled, and under-informative function names

Severity: Informational

AcknowledgedStatus:

The contract receives and sends out amounts of in different decimal places to the peak contracts. We have identified the following problems that has caused us confusion
in this audit:
Description: Core btc

1. Core.sol::L52 states that , which should be or
instead.

BTC amount supplied, scaled by 1e18 BTC amount supplied, scaled by 1e10 BTC amount supplied, in 18
decimal places

2. Core.sol::L92 states that , which should be or
instead, given that the returned is in 36 decimal places from .

btc amount redeemed, scaled by 1e18 BTC amount redeemed, scaled by 1e18 BTC amount redeemed, in 36
decimal places btc bBtcToBtc

3. Core.sol::L104 states that , which should be orbtc amount redeemed, scaled by 1e36 BTC amount expected, scaled by 1e18 BTC amount expected, in 36

. It also does not appropriately name the that is returned.decimal places fee

4. Core.sol::L106 function name of should be renamed to more accurately and pre-emptively warn any users of the function of the uniquely
scaled effect.

bBtcToBtc bBtcToBtcScaled

5. BadgerSettPeak.sol::L143 states that , which should be or .BTC amount, scaled by 1e36 BTC amount, scaled by 1e18 BTC amount, in 36 decimal places

6. BadgerSettPeak.sol::L152 states that which should be .is already scaled by 1e36 is already scaled by 1e18

7. BadgerYearnWbtcPeak.sol::L119 states that which should be or .BTC amount, scaled by 1e36 BTC amount, scaled by 1e18 BTC amount, in 36 decimal places

8. BadgerYearnWbtcPeak.sol::L126 states that which should be or
.

this value is scaled by 1e36 this value is scaled by 1e18 this value, in 36 decimal
places

9. BadgerYearnWbtcPeak.sol::L134 states that which should be or .btc value, scaled by 1e18 BTC value, scaled by 1e10 BTC value, in 18 decimal places

10. BadgerYearnWbtcPeak.sol::L141-142 states that which
should be .

wBTC and byvWBTC are scaled by 8 decimals. Multiply by 100 to return a value scaled by 1e18
wBTC and byvWBTC are in 8 decimals. Raise the result by 1e2 to return a value in 18 decimal places

Follow the recommendations stated in the description.Recommendation:

From the team: "We can work with the understanding that in the comments scaled by 1e18 means 18 decimals of precision. Fixed 10.2"Update:

QSP-11 Magic numbers

Severity: Informational

AcknowledgedStatus:

, , ,File(s) affected: Core.sol BadgerSettPeak.sol BadgerYearnWbtcPeak.sol Zap.sol

Magic numbers are constant numbers used in the middle, usually without description and requires some inference to understand what is going on. It would be far better as a
security and software engineering practice to have it declared as a named state constant, much like it was done for .
Description:

Core::PRECISION
The following examples were discovered:

1. Core.sol::L114 | 1e18

2. Core.sol::L116 | 1e18

3. Zap.sol::L89 | poolId + 2

4. Zap.sol::L236 | 1e18

5. BadgerSettPeak.sol::L118 | 1e18

6. BadgerSettPeak.sol::L153 | 1e18

7. BadgerSettPeak.sol::L172 | 1e36

8. BadgerYearnWbtcPeak.sol::L102 | 1e18

9. BadgerYearnWbtcPeak.sol::L127 | 1e20

10. BadgerYearnWbtcPeak.sol::L145 | 100

Set the magic numbers to appropriately named state constants and use those state constants instead.Recommendation:

From the team: "This could have made it clearer. Not changing now because I dont wanna risk adding new variables (even constant ones) because that comes at the risk of messing up
the storage slots."
Update:

QSP-12 Dormant peaks may redeem

Severity: Undetermined

AcknowledgedStatus:

It is currently possible for peaks with status of to in , and it is not clear, due to the lack of technical documentation around that, if this is
intentional.
Description: PeakState.Dormant redeem Core

Have clear technical documentation around and the different possible versions and what is allowed and what is not. It may not be intended for dormant peaks to
be able to perform these actions, and if so, validate against that.
Recommendation: PeakState

From the team: "Intended behavior"Update:

QSP-13 Cross peak withdrawal is allowed

Severity: Undetermined

AcknowledgedStatus:

, ,File(s) affected: Core.sol BadgerSettPeak.sol BadgerYearnWbtcPeak.sol

ibBTC resembles an index token across the different peaks that target different liquidity pools. Users currently can deposit into any of the pools to mint ibBTC and redeem it from
any other arbitrary pools. This operates under the assumption that all BTC-derived tokens are equivalent in value, which may not always hold, and can allow for arbitrage of unbounded values.
Building an index token does not necessarily require cross pool withdrawals as long as the value in shares and total supply calculations are done across pools.

Description:

Accounting for and limiting the withdrawals to the deposit pools can contain the exposure to the compromised pools only. Given the various inherent risk levels of different
third-party pools (e.g Curve vs Yearn), containing the exposure can have security benefits.
Recommendation:

From the team: "Intended behavior"Update:

Automated Analyses

Slither

Slither analyzed all the contracts, and 122 results were found, of which all of them were deemed to be false-positives.

Test Results

Test Suite Results

We were only able to run the test suite as per the instructions on one of the auditor's setup. It required access to an external node, in this case, an Alchemy API key was

necessary.

BadgerSettPeak
✓ mint (188ms)
✓ setPeakStatus (46ms)
✓ redeem (135ms)
✓ redeem fails for Extinct peak (71ms)
✓ collectFee (55ms)
✓ modifyWhitelistedCurvePools (276ms)

Zero fee and redeem all
✓ setConfig
✓ mint (134ms)
✓ redeem (127ms)
✓ collectFee reverts when fee=0

Core
✓ can't add duplicate peak
✓ whitelistPeak fails from non-admin account
✓ whitelistPeak fails for non-contract account
✓ setPeakStatus fails from non-admin account
✓ setPeakStatus (63ms)
✓ mint fails from unwhitelisted peak
✓ redeem fails from unwhitelisted peak
✓ can't set null fee sink

BadgerSettPeak + SaddlePeak (mainnet-fork)
✓ saddlePeak.modifyWhitelistedCurvePools (558ms)
✓ whitelist saddle peak (12310ms)
✓ badgerPeak.modifyWhitelistedCurvePools (41ms)
✓ setConfig
✓ mint with saddleTWRenSBTC (5352ms)
✓ mint with bcrvRenWBTC (85411ms)
✓ mint with bcrvRenWSBTC (10597ms)
✓ mint with b-tbtc/sbtcCrv (21327ms)
✓ pricePerShare should increase after a trade (4550ms)
✓ redeem in bcrvRenWBTC (891ms)
✓ redeem in bcrvRenWSBTC (903ms)
✓ redeem in b-tbtc/sbtcCrv (808ms)
✓ redeem in saddleTWRenSBTC (342ms)
✓ sanity checks (155ms)

BadgerSettPeak + BadgerYearnWbtcPeak (mainnet-fork)
✓ BadgerYearnWbtcPeak is whitelisted
✓ badgerPeak.modifyWhitelistedCurvePools
✓ setConfig
✓ mint with byvWBTC (2127ms)
✓ mint with bcrvRenWSBTC (779ms)
✓ mint with bcrvRenWBTC (683ms)
✓ mint with b-tbtc/sbtcCrv (633ms)
✓ pricePerShare should increase after a trade (2068ms)
✓ redeem in bcrvRenWSBTC (777ms)
✓ redeem in bcrvRenWBTC (752ms)
✓ redeem in b-tbtc/sbtcCrv (704ms)
✓ redeem in byvWBTC (492ms)
✓ sanity checks

BadgerSettPeak (mainnet-fork)
✓ modifyWhitelistedCurvePools
✓ mint with bcrvRenWBTC (327ms)
✓ mint with bcrvRenWSBTC (735ms)
✓ mint with b-tbtc/sbtcCrv (620ms)
✓ redeem in bcrvRenWBTC (311ms)
✓ redeem in bcrvRenWSBTC (326ms)
✓ redeem in b-tbtc/sbtcCrv (283ms)

BadgerYearnWbtcPeak (mainnet-fork)
✓ BadgerYearnWbtcPeak is whitelisted
✓ mint with byvWBTC (95ms)
✓ redeem in byvWBTC (109ms)

Zap (mainnet-fork)
BigNumber.toString does not accept any parameters; base-10 is assumed

✓ admin whitelists (24722ms)
✓ mint with renbtc (118787ms)
✓ mint with wbtc (23350ms)
✓ approveContractAccess (2957ms)

GuestList
✓ setup GuestList (476ms)
✓ mint sett LP
✓ invited guest (alice) can mint (55ms)
✓ alice cannot mint more than userDepositCap
✓ raise userDepositCap
✓ alice mints after userDepositCap raise (64ms)
✓ alice cannot mint more than totalDepositCap
✓ raise totalDepositCap
✓ alice mints after totalDepositCap raise (46ms)
✓ uninvited guest (bob) cannot mint
✓ include bob in GuestList
✓ newly invited guest (bob) mint (41ms)
✓ include pete in GuestList without merkleProof manually
✓ manually added guest (pete) mint (47ms)
✓ remove pete (no merkleProof invitation) from GuestList manually
✓ removed guest (pete) cannot mint
✓ remove bob (merkleProof invitation) from GuestList manually
✓ removed guest (bob) cannot mint

77 passing (6m)

Code Coverage

We were only able to run the code coverage on one of the auditor's setup. The code coverage can and should be pushed to a much higher percentage, ideally at 100%,

given the relatively brief nature of the codebase.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 38.41 33.33 60 38.85

Core.sol 92.31 62.5 91.67 90.57 … 116,136,205

Zap.sol 0 0 0 0 … 235,236,237

bBTC.sol 62.5 33.33 66.67 66.67 35,36,40

contracts/common/ 8.33 12.5 18.75 12.82

AccessControlDefended.sol 60 50 60 71.43 27,31

GuestList.sol 0 0 0 0 … 144,149,150

contracts/common/proxy/ 84.21 60 83.33 88.46

GovernableProxy.sol 85.71 75 80 90 33

IERCProxy.sol 100 100 100 100

Proxy.sol 0 100 50 50 38

UpgradableProxy.sol 90.91 50 100 92.86 40

contracts/interfaces/ 100 100 100 100

ICore.sol 100 100 100 100

IPeak.sol 100 100 100 100

ISett.sol 100 100 100 100

ISwap.sol 100 100 100 100

IbBTC.sol 100 100 100 100

IbyvWbtc.sol 100 100 100 100

contracts/peaks/ 64 75 52.94 64.71

BadgerSettPeak.sol 100 75 100 100

BadgerYearnWbtcPeak.sol 0 100 0 0 … 112,126,143

All files 42.8 34.38 52.86 45.1

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

015938371fdadb4c8996235f7fca667e7722f989a18519e1c2855c2914ee2325 ./contracts/bBTC.sol

ae55300f0371e8517b57b9d6f36b79a13cb5c47e0abdda8fcfb2023d5acda926 ./contracts/Zap.sol

d94dafda4dca1d75a39476a54cd8313de0ec3ffa726faa5738a5a7537cd861e8 ./contracts/Core.sol

c105a8e559cb09525cb19d7b595cb030ea19ef3a48e83ab87912e2f0ac6c833a ./contracts/interfaces/ICore.sol

6fcaf6149fb36650adaaa9d85df7caf80ea51e915dfa3ff6189fc2b0b5c618d3 ./contracts/interfaces/IbyvWbtc.sol

d352b1cc93ee68b7c4762a6f533560f7856ea3953cd91b23caf07241acc0809d ./contracts/interfaces/IbBTC.sol

adfb513defcf20c4df4b1e5aa0af0557c7d60fe6858c7cd20b7829f1eb82e0de ./contracts/interfaces/ISwap.sol

bc83c41872721406a7b15d66b8c8f8676f31147a10661638336062981fdc3e87 ./contracts/interfaces/IPeak.sol

75faa01063e2048216911a66f2406bd78191ac2bfa5176cf8f72d6eee9a14b77 ./contracts/interfaces/ISett.sol

db265fe377b8b811a35b024fa7b85997ee134186a0cb334ee0f7ae2177038bf0 ./contracts/common/GuestList.sol

6d9a408bf846ea26ffce2bd815d0ff8be12721262b4b5e3cf7fa657ba859fc5b ./contracts/common/AccessControlDefended.sol

5dc74be3c385188261936272c88e1f175843680058b9e3a56f8902040a642e50 ./contracts/common/proxy/IERCProxy.sol

56ee6a702666324d2ff33aa1a3c40a3cd65c5a5ab5921c5a3aefefb2106555f6 ./contracts/common/proxy/Proxy.sol

68ee4ff42892c257b9d9fc49263cb0f2efb6813a18f552023a369014d377308e ./contracts/common/proxy/GovernableProxy.sol

b2826b81a0c4d4f59db04b194bf548cb2caa98871e41ea411423c6971938c4f2 ./contracts/common/proxy/UpgradableProxy.sol

4b0cfb824e0015b80c964772797858dc9984844f15d81a5ab3d4436a7488c85b ./contracts/peaks/BadgerYearnWbtcPeak.sol

1a96b7c0e36221b7e4426fdb292dae1b99136a74de1bfbbaf01f4f22e3bc1c72 ./contracts/peaks/BadgerSettPeak.sol

Tests

f61dfef3f6a3682d56b69970b3b16dbbe5965c3e3e56494ba7566f1970d8ed4f ./contracts/test/ZapCall.sol

6538077a7cfc1932c0bb4b06ca7ef6f98f897bfe3655b7ac292ea310bd6b4b38 ./contracts/test/SaddlePeak.sol

cd993a67ef28bae871088d5b68a8cc1fcf58d1142c5cf32c723147e11318cc17 ./test/GuestList.js

b301d0f0bb0a34c77768cba530e65c0dd7dbb08a35bd22d7be1a6a38e60464c1 ./test/deployer.js

19761dd9f1b07a6325488cc3b911493489ae7a6c7bc731eb73d256eea07ab3b9 ./test/BadgerSettPeak.js

4a38787cb91a5d0ce68ab19a63dff494f089273a2ab09086dca74bf537c6df76 ./test/utils.js

51becc9371e38eb3d38d730f3ccc8ab456777c1d9cb3bef556e2b792678c9f3e ./test/Core.test.js

960b4949ca2819b4c679435c899124241475c0e123ba719c643cd6a4e0ddd725 ./test/fork/Zap.js

9ca56297519c539edf07be0c501d71b51bde1776fb33ebab0acf5f612a142619 ./test/fork/BadgerSettPeak.js

06ec88d728879e3befc2686bec9481481968e240530de8f46cf93ca8c3b12226 ./test/fork/YearnWbtcPeak.js

1dec0ba747efcebdb0e5f4855ce4afd67af59e631894caec125db865e14e9c71 ./test/fork/Badger-YearnWbtc-Peak.js

4a4d2ba822d893dc6c9b6dc8fa6cd6ecc400b8711874426cd1802670a87848b6 ./test/fork/Badger-Saddle-Peak.js

Changelog

2021-06-08 - Initial report•

2021-08-05 - Final report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Badger ibBTC Audit

