
July 28th 2021 — Quantstamp Verified

API3
This smart contract audit was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Staking Pool and DAO

Auditors Fayçal Lalidji, Security Auditor
Ed Zulkoski, Senior Security Engineer
Jose Ignacio Orlicki, Senior Engineer

Timeline 2021-05-03 through 2021-06-18

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification README.md

Documentation Quality High

Test Quality High

Source Code
Repository Commit

api3-dao (283e6ba) 283e6ba

api3-dao (d3db4e7) d3db4e7

Total Issues 9 (9 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 2 (2 Resolved)

Informational Risk Issues 3 (3 Resolved)

Undetermined Risk Issues 2 (2 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/api3dao/api3-dao
https://github.com/api3dao/api3-dao/tree/283e6ba8bbf45a8d51bbb6fc166ca3d4673a0911
https://github.com/api3dao/api3-dao
https://github.com/api3dao/api3-dao/tree/d3db4e71c20e8d21202892676e140c5d85895227

Summary of Findings

Initial Audit:
While the inline documentation was in general of high quality, the file could use more documentation. Through reviewing the code, we found of
various levels of severity. We recommend addressing the findings prior to deploying the smart contracts to the main network.

Api3Template.sol 9 potential issues

Update:
All highlighted issues have been either fixed or mitigated by the API3 team.

ID Description Severity Status

QSP-1 Approved Funds Can Be Exploited by Attackers High Fixed

QSP-2 Gas Usage / Loop Concernsfor Medium Mitigated

QSP-3 may be susceptible to griefingupdateCheckpointArray Low Fixed

QSP-4 Race Condition on setDaoApps() Low Fixed

QSP-5 Unchecked function arguments Informational Fixed

QSP-6 Undocumented Constants Informational Fixed

QSP-7 Privileged Roles and Ownership Informational Fixed

QSP-8 Off-by-One Error in updateCheckpointArray Undetermined Fixed

QSP-9 Unclear Condition Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.7.1• Slither

v0.22.19• Mythril

https://github.com/crytic/slither
https://github.com/ConsenSys/mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

Findings

QSP-1 Approved Funds Can Be Exploited by Attackers

Severity: High Risk

FixedStatus:

The funds approved to the can be withdrawn by an attacker using and . This
issue is due to allowing the in to input any value for address while not restricting the function access to only the the timelock
manager address. Similarly, the is free to input any value for input in function.

Description: Api3Pool TimelockUtils.depositWithVesting TimelockUtils.updateTimelockStatus
msg.sender TimelockUtils.depositWithVesting source

msg.sender timelockManagerAddress TimelockUtils.updateTimelockStatus

Exploit Scenario:

1. Alice approve all her funds to be spent by (please note that even when approving only the amount to be staked, Alice still runs the risk to be front-runned
following the same scenario).

Api3Pool

2. Bob the attacker calls while setting the address to Alice's address and the to its own address. This step
allows Bob to transfer Alice's fund to its own balance in .

TimelockUtils.depositWithVesting source userAddress
Api3Pool

3. After the , Bob calls with both and set to its own address. This step
allows Bob to vest his deposited amount in step 2.

releaseStart TimelockUtils.updateTimelockStatus userAddress timelockManagerAddress

4. Bob calls to transfer the stolen funds to its own wallet.TransferUtils.withdraw

We recommend to:

Recommendation:

1. Restrict the function calls to only allow the timelock manager address.TimelockUtils.depositWithVesting

2. Remove from and use state variable that saves the timelock manager address instead.timelockManagerAddress TimelockUtils.updateTimelockStatus

QSP-2 Gas Usage / Loop Concernsfor

Severity: Medium Risk

MitigatedStatus:

File(s) affected: GetterUtils.sol

Gas usage is a main concern for smart contract developers and users, since high gas costs may prevent users from wanting to use the smart contract. Even worse, some gas usage
issues may prevent the contract from providing services entirely. For example, if a loop requires too much gas to exit, then it may prevent the contract from functioning correctly entirely.
Description:

for
Affected functions:

1. .GetterUtils.userDelegateAt

2. .GetterUtils.getUserLocked

3. .GetterUtils.getValueAt

Recommendation:

1. We recommend to implement the same binary search algorithm as implemented in .GetterUtils.userSharesAtWithBinarySearch

2. It is best to break such loops into individual functions as possible.

3. We recommend to implement the same binary search algorithm as implemented in .GetterUtils.userSharesAtWithBinarySearch

Team answer: "All linear searches are replaced with binary searches except because for the majority of the users (which will stake once and remain staked for long
duration) the current implementation is extremely more gas-efficient compared to the alternatives. However, the current implementation disables users from withdrawing if they have made a lot
of staking updates in the last year (more than 50 per week according to tests). As a solution, an additional method is implemented to allow such users to
withdraw their funds by making multiple transactions (note that we don't consider this as normal user flow, it's a fail-safe). This makes unnecessary, which is
why it's removed. Finally, the delegate address checkpoint array is kept in a naive way (doesn't overwrite if there hasn't been a new proposal) to simplify the implementation, as the binary
search allows this (and users can't update delegates frequently anyway so this wasn't providing any benefits assuming there is going to be at least a proposal a week, which means delegate
checkpoints wouldn't have been overwritten anyway)."

Update: getUserLocked()

withdrawPrecalculated()
MAX_INTERACTION_FREQUENCY

QSP-3 may be susceptible to griefingupdateCheckpointArray

Severity: Low Risk

FixedStatus:

File(s) affected: DelegationUtils.sol, StakeUtils.sol, StateUtils.sol

When a user stakes or unstakes tokens, is invoked to ensure that the user's delegate's voting power will be updated (if they
exist). However, if many users also delegate to the same address, updating stake may fail due to the check on of , which
in the worst case would prevent users from unstaking their tokens.

Description: DelegationUtils.updateDelegatedVotingPower
MAX_INTERACTION_FREQUENCY L523-529 updateCheckpointArray

This also affects the and functions.DelegationUtils.delegateVotingPower DelegationUtils. undelegateVotingPower

Suppose address has a large stake that she has delegated to . The malicious users creates 20 addresses and stakes that gets delegated to . This
prevents from unstaking until the end of the epoch, however the sybil attack can be repeated to continue griefing.
Exploit Scenario: 0xAlice 0xBob 1 wei 0xBob

0xAlice

https://github.com/api3dao/api3-dao/blob/283e6ba8bbf45a8d51bbb6fc166ca3d4673a0911/packages/pool/contracts/StateUtils.sol#L523

Revise the and logic, possibly using binary search.Recommendation: updateCheckpointArray getValueAt

QSP-4 Race Condition on setDaoApps()

Severity: Low Risk

FixedStatus:

File(s) affected: StateUtils.sol

If is called in a different block as the of or in a different transaction, the an attacker can front-run the transaction to insert its own to
.

Description: setDaoApps() contructor Api3Pool
setDaoApps()

We recommend to either document this behavior or enforce it with by adding a call to in the the constructor of .Recommendation: setDaoApps() Api3Pool

QSP-5 Unchecked function arguments

Severity: Informational

FixedStatus:

,File(s) affected: StateUtils.sol Api3Template.sol

The following functions should have additional input validation. Extra checks in constructors may mitigate faulty deployments that use default arguments and could require re-
deployment.
Description:

1. should check that is non-zero.StateUtils.constructor api3TokenAddress

2. should invoke to ensure that is a contract.Api3Template.constructor _ensureMiniMeFactoryIsValid(_minimeTokenFactory) _minimeTokenFactory

Add statements to each function.Recommendation: require

QSP-6 Undocumented Constants

Severity: Informational

FixedStatus:

File(s) affected: Api3Template.sol

The two constants on L9-10 do not mention the strings used to derive the hashes. Therefore we cannot validate them.Description: API3_VOTING_APP_ID

Add documentation for the constants.Recommendation:

QSP-7 Privileged Roles and Ownership

Severity: Informational

FixedStatus:

File(s) affected: ClaimUtils.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract.Description: owner
Following the inline documentation in L15, can be "called by a claims manager to pay out an insurance claim".ClaimUtils.sol payOutClaim()

This centralization of power needs to be made clear to the users (should be stated in the user documentation), especially depending on the level of privilege the contract
allows to the claims manager.
Recommendation:

QSP-8 Off-by-One Error in updateCheckpointArray

Severity: Undetermined

FixedStatus:

File(s) affected: StateUtils.sol

In this snippet:Description:

if (checkpointArray.length + 1 >= MAX_INTERACTION_FREQUENCY)
{

uint256 interactionTimestampMaxInteractionFrequencyAgo = snapshotBlockToTimestamp[checkpointArray[checkpointArray.length + 1 - MAX_INTERACTION_FREQUENCY].fromBlock];
require(

block.timestamp - interactionTimestampMaxInteractionFrequencyAgo > EPOCH_LENGTH,
ERROR_FREQUENCY
);

}

For example, if is set to 20, this seems to only allow 19 entries.MAX_INTERACTION_FREQUENCY

Change the if-conditional to . Change the array access
to .

Recommendation: checkpointArray.length + 1 > MAX_INTERACTION_FREQUENCY
checkpointArray[checkpointArray.length + 1 - MAX_INTERACTION_FREQUENCY] checkpointArray[checkpointArray.length - MAX_INTERACTION_FREQUENCY]

QSP-9 Unclear Condition

Severity: Undetermined

FixedStatus:

File(s) affected: DelegationUtils.sol

In , we have the following ternary statement on L117-119:Description: updateDelegatedVotingPower

newDelegatedTo = currentlyDelegatedTo > shares
? currentlyDelegatedTo - shares
: 0;

It is not clear if can ever return false.currentlyDelegatedTo > shares

If the condition can never fail, the statement should be simplified. If not, inline documentation should explain when this could occur.Recommendation:

Automated Analyses

Slither

1. Slither reported several potentially dangerous strict equalities oof the form totalSharesCheckpoint2.fromBlock == block.number, however these were used in expected
ways.

2. In , the requirement is redundant and can be removed as the variable is a .StateUtils.setStakeTarget _stakeTarget >= 0 uint256

3. In several function (, TransferUtils.withdraw ClaimUtils.payOutClaim TimelockUtils.depositWithVesting
transfer transferFrom Api3Token` however.

TransferUtils.deposit , , and), the return value of the
ERC20 and calls are not checked to be true. Note that all calls are to the

Mythril

Mythril did not report any issues.

Code Documentation

1. In , the comment on L10-11: "This method is used to implement the MiniMe interface for the Api3Voting app" is unclear. The seems to
support cloning and a function, neither of which are implemented here.
GetterUtils.sol Minime Token

totalSupplyAt

2. In the comment for on L95-96, it is stated: "User shares only get updated while staking, scheduling unstake or
unstaking". However, shares are not updated when scheduling unstake (and is not called from).

DelegationUtils.updateDelegatedVotingPower
updateDelegatedVotingPower scheduleUnstake

Adherence to Best Practices

1. The literal on should be a declared constant. It is also not clear why this needs to be so large (equivalent to 1000% based on

other constants).

1_000_000_000 StateUtils.sol#L359

2. In , the has the check, whereas does not. It seems this is

likely to save gas since these two functions are always invoked from the same external function. However, it should be documented that

is not safe when called on its own (i.e., without).

StateUtils.sol updateCheckpointArray MAX_INTERACTION_FREQUENCY updateAddressCheckpointArray

updateAddressCheckpointArray updateCheckpointArray

3. It is mentioned on L10 of that is used by . Is there any reason a user should call this function directly? If not, it

should be restricted to only be callable contracts that inherit from it. Similarly, should be restricted to only callable from

contracts?

TransferUtils.sol deposit TimelockManager.sol
TimelockUtils.depositWithVesting

TimelockManager

4. In , it is unclear why is needed as a parameters since it is required to always equal .StakeUtils.depositAndStake userAddress msg.sender

5. In , L9-10 define two constants, where one is commented out depending on the chain used (rinkeby or mainnet). This should

instead be controlled by deployment scripts.

Api3Template.sol API3_VOTING_APP_ID

6. Some variables names are to long, for example .interactionTimestampMaxInteractionFrequencyAgo

7. Document what is the initial or minimum (mea culpa) as this parameter defines the speed of APR update and is critical.aprUpdateCoefficient

Test Results

Test Suite Results

payOutClaim
Caller is claims manager
Pool has enough funds

✓ pays out claim (116ms)
Pool does not have enough funds

✓ reverts (57ms)
Caller is not claims manager

✓ reverts

delegateVotingPower
Delegate address is not zero

Delegate address is not caller
Delegate is not delegating
User has not updated their delegation status less than reward epoch ago
User did not have the same delegate
Receiving user has not been delegated to too frequently

✓ delegates voting power (170ms)
Receiving user has been delegated to too frequently

✓ reverts (3052ms)
User had the same delegate

✓ reverts (140ms)
User has updated their delegation status less than reward epoch ago

✓ reverts
Delegate is delegating

✓ reverts
Delegate address is caller

✓ reverts
Delegate address is zero

✓ reverts

undelegateVotingPower
User has delegated before
User has not updated their delegation status less than reward epoch ago

✓ undelegates voting power (155ms)
User has updated their delegation status less than reward epoch ago

✓ reverts
User has not delegated before

✓ reverts

totalSupplyOneBlockAgo
✓ gets total supply one block ago (116ms)

https://github.com/Giveth/minime

userSharesAt
✓ gets user shares at (105ms)

userSharesAtWithBinarySearch
✓ gets user shares at (112ms)

userReceivedDelegationAt
Searched block is within MAX_INTERACTION_FREQUENCY

✓ gets user's received delegation at the block (3212ms)
Searched block is not within MAX_INTERACTION_FREQUENCY

✓ reverts (3791ms)

getDelegateAt
✓ gets delegate at (142ms)

getUserLocked
It has been more than REWARD_VESTING_PERIOD since the genesis epoch
User has staked

✓ returns the rewards paid to the user in the last REWARD_VESTING_PERIOD (3740ms)
User has not staked

✓ returns 0 (969ms)
It has not been more than REWARD_VESTING_PERIOD since the genesis epoch

✓ returns the rewards paid to the user (1168ms)

payReward
Reward for the previous epoch has not been paid

Pool contract is authorized to mint tokens
Stake target is not zero
Total stake is above target

✓ updates APR and pays reward (473ms)
Total stake is below target

✓ updates APR and pays reward (187ms)
Stake target is zero

✓ sets APR to minimum and pays reward (148ms)
Pool contract is not authorized to mint tokens

✓ skips the payment and APR update (137ms)
Rewards for multiple epochs have not been paid

Pool contract is authorized to mint tokens
✓ updates APR and only pays the reward for the current epoch (174ms)

Pool contract is not authorized to mint tokens
✓ skips the payment and APR update (135ms)

Reward for the current epoch has been paid
✓ does nothing (167ms)

stake
User has enough to stake
User has a delegate and has staked before

✓ stakes and updates delegated voting power (145ms)
User does not have a delegate

✓ stakes (68ms)
User does not have enough to stake

✓ reverts

depositAndStake
Caller is the beneficiary

✓ deposits and stakes (51ms)
Caller is not the beneficiary

✓ reverts

scheduleUnstake
User has enough staked to schedule unstake

✓ schedules unstake (69ms)
User does not have enough staked to schedule unstake

✓ reverts

unstake
Enough time has passed since the unstake scheduling
The unstake has not expired

User still has the tokens to unstake
User has a delegate

✓ unstakes and updates delegated voting power (210ms)
User does not have a delegate

✓ unstakes (142ms)
User no longer has the tokens to unstake

✓ unstakes as much as possible (183ms)
The unstake has expired

✓ reverts (127ms)
Not enough time has passed since the unstake scheduling

✓ reverts (92ms)

unstakeAndWithdraw
✓ unstakes and withdraws (135ms)

constructor
✓ initializes with the correct parameters (112ms)

setDaoApps
DAO apps are not set before

DAO app addresses to be set are not zero
✓ sets DAO apps

DAO app addresses to be set are zero
✓ reverts (45ms)

DAO apps are set before
Caller is primary Agent

✓ sets DAO apps (52ms)
Caller is a random person

✓ reverts

setClaimsManagerStatus
Caller is primary Agent

✓ sets claims manager status (63ms)
Caller is not primary Agent

✓ reverts

setStakeTarget
Caller is Agent

Stake target to be set is smaller than or equal to 100,000,000
✓ sets stake target (65ms)

Stake target to be set is larger than 100,000,000
✓ reverts

Caller is not DAO Agent
✓ reverts

setMaxApr
Caller is DAO Agent

Max APR to be set is larger than or equal to min APR
✓ sets max APR (84ms)

Max APR to be set is smaller than min APR
✓ reverts

Caller is not DAO Agent
✓ reverts

setMinApr
Caller is DAO Agent
Min APR to be set is smaller than or equal to max APR

✓ sets min APR (67ms)
Min APR to be set is larger than max APR

✓ reverts
Caller is not DAO Agent

✓ reverts

setUnstakeWaitPeriod
Caller is primary DAO Agent
Unstake wait period to be set is larger than or equal to epoch length

✓ sets unstake wait period (49ms)
Unstake wait period to be set is smaller than epoch length

✓ reverts (42ms)
Caller is not primary DAO Agent

✓ reverts

setAprUpdateCoefficient
Caller is DAO Agent

APR update coefficient to be set is larger than 0 and smaller than or equal to 1,000,000,000
✓ sets APR update coefficient (65ms)

APR update coefficient to be set is 0 or larger than 1,000,000,000
✓ reverts

Caller is not DAO Agent
✓ reverts

setProposalVotingPowerThreshold
Caller is primary DAO Agent

Proposal voting power threshold to be set is smaller than or equal to 10,000,000
✓ sets proposal voting power threshold (56ms)

Proposal voting power threshold to be set is larger than 10,000,000
✓ reverts

Caller is not primary DAO Agent
✓ reverts

publishSpecsUrl
✓ publishes specs URL

updateLastVoteSnapshotBlock
Caller is a Voting app

✓ updates lastVoteSnapshotBlock (49ms)
Caller is not an authorized Api3Voting app

✓ reverts

depositWithVesting
User has not received from this timelock manager
Release end is later than release start

Amount is not zero
✓ deposits with vesting (46ms)

Amount is zero
✓ reverts

Release end is not later than release start
✓ reverts

User has received from this timelock manager before
✓ reverts (68ms)

updateTimelockStatus
Timelock has started releasing
Timelock has remaining tokens

It is past release end
✓ updates timelock status (63ms)

It is not past release end
✓ updates timelock status (169ms)

Timelock does not have remaining tokens
✓ reverts (69ms)

Timelock has not started releasing
✓ reverts (55ms)

deposit
✓ deposits

withdraw
User has enough withdrawable funds

✓ updates user locked and withdraws (2701ms)
User does not have enough withdrawable funds

✓ reverts (73ms)
User does not have enough funds

✓ reverts

82 passing (4m)

api3-voting$ npm run test

Contract: API3 Voting App delegation tests
Solidity stack traces only work with Solidity version 0.5.1 or higher.

delegation for the voting working properly
✓ delegate to myself or to 0 address (63ms)
✓ need to delegate (243ms)
✓ delegate after already delegated
✓ undo delegate earlier then after a week
✓ undo delegate (170ms)
✓ delegate delegated (170ms)
✓ delegate delegated in a cycle (97ms)

Contract: API3 Voting App
normal token supply, common tests

✓ fails on reinitialization
✓ cannot initialize base app (55ms)
✓ checks it is forwarder
✓ can change required support (39ms)
✓ fails changing required support lower than minimum acceptance quorum (45ms)
✓ fails changing required support to 100% or more (98ms)
✓ can change minimum acceptance quorum (39ms)
✓ fails changing minimum acceptance quorum to greater than min support

normal token supply, 0 decimals
✓ deciding voting is automatically executed (57ms)
✓ deciding voting is automatically executed (long version) (42ms)
✓ execution scripts can execute multiple actions (57ms)
✓ execution script can be empty (45ms)
✓ execution throws if any action on script throws (85ms)
✓ forwarding creates vote (50ms)
creating vote

✓ has correct state
✓ fails getting a vote out of bounds
✓ changing required support does not affect vote required support (124ms)
✓ changing min quorum doesnt affect vote min quorum (96ms)
✓ holder can vote (42ms)
✓ holder can modify vote (77ms)
✓ token transfers dont affect voting (47ms)
✓ throws when non-holder votes
✓ throws when voting after voting closes
✓ can execute if vote is approved with support and quorum (101ms)
✓ cannot execute vote if not enough quorum met (63ms)
✓ cannot execute vote if not support met (95ms)
✓ vote can be executed automatically if decided (53ms)
✓ vote can be not executed automatically if decided (64ms)
✓ cannot re-execute vote (82ms)
✓ cannot vote on executed vote (68ms)

normal token supply, 2 decimals
✓ deciding voting is automatically executed (80ms)
✓ deciding voting is automatically executed (long version) (64ms)
✓ execution scripts can execute multiple actions (79ms)
✓ execution script can be empty (71ms)
✓ execution throws if any action on script throws (135ms)
✓ forwarding creates vote (59ms)
creating vote

✓ has correct state (43ms)
✓ fails getting a vote out of bounds
✓ changing required support does not affect vote required support (234ms)
✓ changing min quorum doesnt affect vote min quorum (127ms)
✓ holder can vote (64ms)
✓ holder can modify vote (119ms)
✓ token transfers dont affect voting (85ms)
✓ throws when non-holder votes (41ms)
✓ throws when voting after voting closes (56ms)
✓ can execute if vote is approved with support and quorum (131ms)
✓ cannot execute vote if not enough quorum met (94ms)
✓ cannot execute vote if not support met (94ms)
✓ vote can be executed automatically if decided (52ms)
✓ vote can be not executed automatically if decided (69ms)
✓ cannot re-execute vote (69ms)
✓ cannot vote on executed vote (68ms)

normal token supply, 18 decimals
✓ deciding voting is automatically executed (72ms)
✓ deciding voting is automatically executed (long version) (59ms)
✓ execution scripts can execute multiple actions (81ms)
✓ execution script can be empty (58ms)
✓ execution throws if any action on script throws (140ms)
✓ forwarding creates vote (66ms)
creating vote

✓ has correct state
✓ fails getting a vote out of bounds
✓ changing required support does not affect vote required support (180ms)
✓ changing min quorum doesnt affect vote min quorum (122ms)
✓ holder can vote (65ms)
✓ holder can modify vote (110ms)
✓ token transfers dont affect voting (68ms)
✓ throws when non-holder votes (40ms)
✓ throws when voting after voting closes (41ms)
✓ can execute if vote is approved with support and quorum (113ms)
✓ cannot execute vote if not enough quorum met (62ms)
✓ cannot execute vote if not support met (85ms)
✓ vote can be executed automatically if decided (48ms)
✓ vote can be not executed automatically if decided (73ms)
✓ cannot re-execute vote (68ms)
✓ cannot vote on executed vote (102ms)

normal token supply, 26 decimals
✓ deciding voting is automatically executed (84ms)
✓ deciding voting is automatically executed (long version) (84ms)
✓ execution scripts can execute multiple actions (90ms)
✓ execution script can be empty (64ms)
✓ execution throws if any action on script throws (201ms)
✓ forwarding creates vote (109ms)
creating vote

✓ has correct state
✓ fails getting a vote out of bounds
✓ changing required support does not affect vote required support (165ms)
✓ changing min quorum doesnt affect vote min quorum (129ms)
✓ holder can vote (65ms)
✓ holder can modify vote (103ms)
✓ token transfers dont affect voting (68ms)
✓ throws when non-holder votes (58ms)
✓ throws when voting after voting closes (63ms)
✓ can execute if vote is approved with support and quorum (156ms)
✓ cannot execute vote if not enough quorum met (84ms)
✓ cannot execute vote if not support met (91ms)
✓ vote can be executed automatically if decided (52ms)
✓ vote can be not executed automatically if decided (69ms)
✓ cannot re-execute vote (98ms)
✓ cannot vote on executed vote (79ms)

wrong initializations
✓ fails if min acceptance quorum is greater than min support
✓ fails if min support is 100% or more (57ms)

empty token
✓ fails creating a vote if token has no holder (63ms)

token supply = 1
✓ new vote cannot be executed before voting (108ms)
new vote parameters

✓ creating vote as holder executes vote (if _canExecute param says so) (85ms)
✓ creating vote as holder doesn't execute vote if _canExecute param doesn't says so (80ms)

token supply = 3
✓ new vote cannot be executed before holder2 voting (181ms)
✓ creating vote as holder2 executes vote (92ms)

changing token supply
✓ uses the correct snapshot value if tokens are minted afterwards (76ms)
✓ uses the correct snapshot value if tokens are minted in the same block (79ms)

before init
✓ fails creating a vote before initialization
✓ fails to forward actions before initialization

isValuePct unit test
✓ tests total = 0
✓ tests value = 0
✓ tests pct ~= 100
✓ tests strict inequality

119 passing (2m)

Code Coverage

cd & npm run test:coveragepool/

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 100 100 100 100

Api3Pool.sol 100 100 100 100

ClaimUtils.sol 100 100 100 100

DelegationUtils.sol 100 100 100 100

GetterUtils.sol 100 100 100 100

RewardUtils.sol 100 100 100 100

StakeUtils.sol 100 100 100 100

StateUtils.sol 100 100 100 100

TimelockUtils.sol 100 100 100 100

TransferUtils.sol 100 100 100 100

contracts/auxiliary/interfaces/ 100 100 100 100

IApi3Pool.sol 100 100 100 100

IApi3Token.sol 100 100 100 100

ITimelockManager.sol 100 100 100 100

v0.8.contracts/auxiliary/interfaces/ 2/ 100 100 100 100

IApi3Token.sol 100 100 100 100

IERC20.sol 100 100 100 100

ITimelockManager.sol 100 100 100 100

contracts/interfaces/ 100 100 100 100

IApi3Pool.sol 100 100 100 100

IClaimUtils.sol 100 100 100 100

IDelegationUtils.sol 100 100 100 100

IGetterUtils.sol 100 100 100 100

IRewardUtils.sol 100 100 100 100

IStakeUtils.sol 100 100 100 100

IStateUtils.sol 100 100 100 100

ITimelockUtils.sol 100 100 100 100

ITransferUtils.sol 100 100 100 100

contracts/mock/ 100 100 100 100

MockApi3Staker.sol 100 100 100 100

MockApi3Voting.sol 100 100 100 100

All files 100 100 100 100

cd api3- & npm run coveragevoting/

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 97.96 95.65 91.3 97.96

Api3Voting.sol 97.96 95.65 91.3 97.96 154,216

contracts/interfaces/ 100 100 100 100

IApi3Pool.sol 100 100 100 100

All files 97.96 95.65 91.3 97.96

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

adcfa08eb5348d3c05244ea53a493d122f0d26fc060fddcfea275098f0fe2ee3 ./Api3Template.sol

8138006671e707b007e7af7e4a3039532b72835d416d473933448512cd9cb3ed ./Api3Voting.sol

32eee74c77361eba3f58a94a7b58ba13d91d1c5338cd81401d1cc3fa76daf7f6 ./contracts/GetterUtils.sol

8cbc970457796ce6fbc70333862261c39217b5a86565fa609e18e7da9d09a21f ./contracts/TransferUtils.sol

e2d70e8f646070d54ee6ab28216733def0483ef855b17e92324c866e8e0ca749 ./contracts/StakeUtils.sol

678030af6afa7474836bd5f6fec3ee784941a4e3df2e5f0ab51ccc78cb81ff22 ./contracts/Api3Pool.sol

c384dce5ac5a9dac3c224841c577d1561a5f31fe897999acb5197ebd96b80b03 ./contracts/DelegationUtils.sol

ca58d3a279b934293788cf0fa2c987769b10d7ee529bf532b48faeb5838f19f4 ./contracts/TimelockUtils.sol

398592d423b9eb1b5051303d6ff29220e499840485c87c29f347fce3558d33d9 ./contracts/ClaimUtils.sol

b624b27216e0cace4804ad70aea88bff46da5238487c51827577cb1566f9590a ./contracts/StateUtils.sol

5956d48673d4c917c6a6a1d42fbdacfedb7ddd0fcefb9a99e4c8ab540f3317c5 ./contracts/RewardUtils.sol

8955d658abbc7fc99c954486e98b80e82159f2c538a8f85f0e5373a83200eb68 ./contracts/interfaces/IStateUtils.sol

5fb49bf8ff93c8eebcc3bcc2e6bf6be9eace90aab290a469a5b29c1644283101 ./contracts/interfaces/ITransferUtils.sol

32b242eacd40a12808f8b5404d616ac34a75dd0a7b77ab6d2ee2d050e755776a ./contracts/interfaces/IStakeUtils.sol

df2aa0a1500da7b79794de9740f7fa17c2adfa3d11cf0d82de2cb030d61cce51 ./contracts/interfaces/IApi3Pool.sol

33bc2e85777d27427ea375b7a7ed3a5070b89d6980589fec3d0a0e9f74d6aa79 ./contracts/interfaces/ITimelockUtils.sol

91a9fd3bbd620eac79684d48bdfa1953d67083e691c815845ea0b04db313c502 ./contracts/interfaces/IDelegationUtils.sol

926fec1ecbec1d0e521837209e1b14d98450c5bb8bb0330b38d58006c8bf66b2 ./contracts/interfaces/IRewardUtils.sol

b331158ded472ef51d27078d034a1f8c5b34177da4d77355271c2aceaf7b43b5 ./contracts/interfaces/IGetterUtils.sol

b747cd98f0cb1a11f9c424f8f21a105093e4cd12c219b2e7a4ab6d33b4f53f9f ./contracts/interfaces/IClaimUtils.sol

Tests

ae31e818e49ccd602fc8cbdf62337c5e06fe7bf0595ff235b0bf0bfa7f7cbaa2 ./api3template.js

624ce605cc55e321b8c4066f61015ee4ce225111c0660eb73ea1add276bd7804 ./voting.js

c6aee5753d46b96297210a61aaa5e362a40f6d1341d9da68c76befea622c610b ./delegation-integration.js

5dda8ffa80edb2bd970683edc7389f981488a28468a679a886065e176d0ff5a3 ./errors.js

d2ba2048b478df1eb4864e105c70eb4f3f66a5037513a9c641ecd93b1b20d29c ./test/DelegationUtils.sol.js

d7166ab8d2095f3e29cdf4db7f666aff104a34f81238a7f8788402dc03eff42b ./test/TransferUtils.sol.js

6cdef3b4abc62be9f984112ac0fbd01f12ee81f4f4dccc349fbfb2ad42817706 ./test/ClaimUtils.sol.js

c380164a0b5b52c2fa6965b3c8d31b1b8c0608496a210de9cd9be672239ee677 ./test/RewardUtils.sol.js

62530c0fc1ab4e58ffb7ff4a6f5e42670de8de8c3fd913e63e01b7038d6a80e9 ./test/StakeUtils.sol.js

ab3d68d53c8e58f5fb0cd8b2b4eb451ff01e52611c49c4fb1704f95e1766a536 ./test/StateUtils.sol.js

3f3f0c189a11dd375d03761dc7c486a941cd749c3009ec6b4892ed26f4ad1fca ./test/GetterUtils.sol.js

935163bbcfad488df062584e05f96984afcb8e2fcdbce23120b09d8e0071260f ./test/TimelockUtils.sol.js

Changelog

2021-05-18 - Initial report•

2021-06-18 - Re-audit (d3db4e7)•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

API3 Audit

